本节简单解释了PostgreSQL NOT IN在执行时为何会出现时快时慢的现象。

测试数据如下:

[local]:5432 pg12@testdb=# select count(*) from tbl; count ------- 1(1 row)Time: 6.009 ms[local]:5432 pg12@testdb=# select count(*) from t_big_null; count ---------- 10000001(1 row)Time: 633.248 ms[local]:5432 pg12@testdb=# \d tbl Table "public.tbl" Column | Type | Collation | Nullable | Default --------+---------+-----------+----------+--------- id | integer | | not null | value | integer | | not null | Indexes: "tbl_pkey" PRIMARY KEY, btree (id)Rules: rule_tbl_update AS ON INSERT TO tbl WHERE (EXISTS ( SELECT tbl_1.id, tbl_1.value FROM tbl tbl_1 WHERE tbl_1.id = new.id)) DO INSTEAD UPDATE tbl SET value = tbl.value + 1 WHERE tbl.id = new.id[local]:5432 pg12@testdb=# \d t_big_null Table "public.t_big_null" Column | Type | Collation | Nullable | Default --------+---------+-----------+----------+--------- id | integer | | | [local]:5432 pg12@testdb=#

注意tbl表只有一行数据(id = 1),而t_big_null表在插入”id = 1”这一行时有意放在最后才插入

truncate table t_big_null;insert into t_big_null select generate_series(2,10000000);insert into t_big_null values(1);一、数据结构

SubPlanState
子计划运行期状态

/* ---------------- * SubPlanState node * ---------------- */typedef struct SubPlanState{ NodeTag type; SubPlan *subplan; /* expression plan node */ struct PlanState *planstate; /* subselect plan's state tree */ struct PlanState *parent; /* parent plan node's state tree */ ExprState *testexpr; /* 组合表达式状态;state of combining expression */ List *args; /* 参数表达式状态;states of argument expression(s) */ HeapTuple curTuple; /* subplan最近的元组;copy of most recent tuple from subplan */ Datum curArray; /* most recent array from ARRAY() subplan */ /* these are used when hashing the subselect's output: */ TupleDesc descRight; /* 投影后的子查询描述符;subselect desc after projection */ ProjectionInfo *projLeft; /* for projecting lefthand exprs */ ProjectionInfo *projRight; /* for projecting subselect output */ TupleHashTable hashtable; /* hash table for no-nulls subselect rows */ TupleHashTable hashnulls; /* hash table for rows with null(s) */ bool havehashrows; /* true if hashtable is not empty */ bool havenullrows; /* true if hashnulls is not empty */ MemoryContext hashtablecxt; /* memory context containing hash tables */ MemoryContext hashtempcxt; /* temp memory context for hash tables */ ExprContext *innerecontext; /* econtext for computing inner tuples */ AttrNumber *keyColIdx; /* control data for hash tables */ Oid *tab_eq_funcoids; /* equality func oids for table * datatype(s) */ Oid *tab_collations; /* collations for hash and comparison */ FmgrInfo *tab_hash_funcs; /* hash functions for table datatype(s) */ FmgrInfo *tab_eq_funcs; /* equality functions for table datatype(s) */ FmgrInfo *lhs_hash_funcs; /* hash functions for lefthand datatype(s) */ FmgrInfo *cur_eq_funcs; /* equality functions for LHS vs. table */ ExprState *cur_eq_comp; /* equality comparator for LHS vs. table */} SubPlanState;

SubPlan
子查询计划

/* * SubPlan - executable expression node for a subplan (sub-SELECT) * * The planner replaces SubLink nodes in expression trees with SubPlan * nodes after it has finished planning the subquery. SubPlan references * a sub-plantree stored in the subplans list of the toplevel PlannedStmt. * (We avoid a direct link to make it easier to copy expression trees * without causing multiple processing of the subplan.) * 查询规划器在完成子查询的规划后使用SubPlan节点替换表达式树中的SubLink节点。 * SubPlan引用了存储在高层PlannedStmt中的subplans链表中的sub-plantree。 * (避免使用直接链接,从而使得拷贝表达式树相对比较简单) * * In an ordinary subplan, testexpr points to an executable expression * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining * operator(s); the left-hand arguments are the original lefthand expressions, * and the right-hand arguments are PARAM_EXEC Param nodes representing the * outputs of the sub-select. (NOTE: runtime coercion functions may be * inserted as well.) This is just the same expression tree as testexpr in * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by * suitably numbered PARAM_EXEC nodes. * 常规情况下,testexpr指向用于组合操作的可执行表达式(OpExpr、OpExprs的AND/OR树或者RowCompareExpr); * 左参数是原始的左表达式,右参数是PARAM_EXEC参数节点用以表示子查询的输出。 * 与原始SubLink节点的testexpr具有相同的表达式树,但PARAM_SUBLINK节点则使用合适的已编号PARAM_EXEC节点替代。 * * If the sub-select becomes an initplan rather than a subplan, the executable * expression is part of the outer plan's expression tree (and the SubPlan * node itself is not, but rather is found in the outer plan's initPlan * list). In this case testexpr is NULL to avoid duplication. * 如果子查询成了initplan而不是subplan,可执行的表达式是外层plan表达式树的一部分。 * 这种情况下,testexpr为NULL以避免重复。 * * The planner also derives lists of the values that need to be passed into * and out of the subplan. Input values are represented as a list "args" of * expressions to be evaluated in the outer-query context (currently these * args are always just Vars, but in principle they could be any expression). * The values are assigned to the global PARAM_EXEC params indexed by parParam * (the parParam and args lists must have the same ordering). setParam is a * list of the PARAM_EXEC params that are computed by the sub-select, if it * is an initplan; they are listed in order by sub-select output column * position. (parParam and setParam are integer Lists, not Bitmapsets, * because their ordering is significant.) * 规划器还派生了需要传入和传出子计划的值的链表。 * 输入值标识位表达式的“args”链表,在外层查询上下文中进行解析。 * (这些args通常是Vars,但原则上它们可以是任意表达式) * 这些值以parParam为索引给全局PARAM_EXEC参数赋值。 * setParam是PARAM_EXEC参数链表,通过子查询(如为initplan)计算所得。 * 它们按子查询输出列的位置进行排序组织为链表形式。 * (parParam和setParam是整型链表,而不是Bitmapsets链表) * * Also, the planner computes startup and per-call costs for use of the * SubPlan. Note that these include the cost of the subquery proper, * evaluation of the testexpr if any, and any hashtable management overhead. * 同时,规划器计算SubPlan启动和每次调用的成本。注意:包括子查询正常解析testexpr的成本以及哈希表管理成本。 */typedef struct SubPlan{ Expr xpr;//表达式 /* Fields copied from original SubLink: */ //从SubLink中拷贝而来 SubLinkType subLinkType; /* see above */ /* The combining operators, transformed to an executable expression: */ //组合操作符,转换为可执行的表达式 Node *testexpr; /* OpExpr or RowCompareExpr expression tree */ List *paramIds; /* 参数IDs;IDs of Params embedded in the above */ /* Identification of the Plan tree to use: */ //Plan tree标识 int plan_id; /* Index (from 1) in PlannedStmt.subplans */ /* Identification of the SubPlan for EXPLAIN and debugging purposes: */ //EXPLAIN和debug目的的SubPlan标识 char *plan_name; /* A name assigned during planning */ /* Extra data useful for determining subplan's output type: */ //用于确定subplan输出类型的额外信息 Oid firstColType; /* subplan结果的第一个列类型;Type of first column of subplan result */ int32 firstColTypmod; /* 第一列的Typmod;Typmod of first column of subplan result */ Oid firstColCollation; /* 第一列的Collation;Collation of first column of subplan * result */ /* Information about execution strategy: */ //执行阶段的相关信息 bool useHashTable; /* 是否使用哈希表存储子查询输出;true to store subselect output in a hash * table (implies we are doing "IN") */ bool unknownEqFalse; /* 如OK为T,如为未知则为F;快速处理null值;true if it's okay to return FALSE when the * spec result is UNKNOWN; this allows much * simpler handling of null values */ bool parallel_safe; /* 是否并行安全?is the subplan parallel-safe? */ /* Note: parallel_safe does not consider contents of testexpr or args */ /* Information for passing params into and out of the subselect: */ //用于给子查询传入和传出参数的信息 /* setParam and parParam are lists of integers (param IDs) */ //setParam和parParam是整型链表(param IDs) List *setParam; /* initplan subqueries have to set these * Params for parent plan */ List *parParam; /* indices of input Params from parent plan */ List *args; /* 以parParam值进行传递的表达式;exprs to pass as parParam values */ /* Estimated execution costs: */ //估算执行成本 Cost startup_cost; /* one-time setup cost */ Cost per_call_cost; /* cost for each subplan evaluation */} SubPlan;

SubLinkType
SubLink类型

/* * SubLink * * A SubLink represents a subselect appearing in an expression, and in some * cases also the combining operator(s) just above it. The subLinkType * indicates the form of the expression represented: * EXISTS_SUBLINK EXISTS(SELECT ...) * ALL_SUBLINK (lefthand) op ALL (SELECT ...) * ANY_SUBLINK (lefthand) op ANY (SELECT ...) * ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...) * EXPR_SUBLINK (SELECT with single targetlist item ...) * MULTIEXPR_SUBLINK (SELECT with multiple targetlist items ...) * ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...) * CTE_SUBLINK WITH query (never actually part of an expression) * 我们使用SubLink表示在表达式中出现的子查询,在某些情况下组合操作符会出现在SubLink之上。 * subLinkType表示表达式的形式: * EXISTS_SUBLINK EXISTS(SELECT ...) * ALL_SUBLINK (lefthand) op ALL (SELECT ...) * ANY_SUBLINK (lefthand) op ANY (SELECT ...) * ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...) * EXPR_SUBLINK (SELECT with single targetlist item ...) * MULTIEXPR_SUBLINK (SELECT with multiple targetlist items ...) * ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...) * CTE_SUBLINK WITH query (never actually part of an expression) * * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the * same length as the subselect's targetlist. ROWCOMPARE will *always* have * a list with more than one entry; if the subselect has just one target * then the parser will create an EXPR_SUBLINK instead (and any operator * above the subselect will be represented separately). * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most * one row (if it returns no rows, the result is NULL). * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean * results. ALL and ANY combine the per-row results using AND and OR * semantics respectively. * ARRAY requires just one target column, and creates an array of the target * column's type using any number of rows resulting from the subselect. * 对于ALL,ANY和ROWCOMPARE,左操作符是与子查询目标链表长度一致的表达式链表。 * ROWCOMPARE通常有超过一个条目的链表;如果子查询刚好只有一个目标列,那么解析器会创建EXPR_SUBLINK * (同时所有在子查询之上的操作符会单独表示) * ROWCOMPARE, EXPR, 和MULTIEXPR要求子查询至少输出一行(如返回0行,则结果为NULL)。 * ALL,ANY和ROWCOMPARE要求组合操作符输出布尔型结果。 * ALL/ANY使用AND/OR语义来组合每一行的结果。 * * SubLink is classed as an Expr node, but it is not actually executable; * it must be replaced in the expression tree by a SubPlan node during * planning. * SubLink归类为Expr节点,但实际上并不是可执行的,必须在计划阶段通过SubPlan替代。 * * NOTE: in the raw output of gram.y, testexpr contains just the raw form * of the lefthand expression (if any), and operName is the String name of * the combining operator. Also, subselect is a raw parsetree. During parse * analysis, the parser transforms testexpr into a complete boolean expression * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the * output columns of the subselect. And subselect is transformed to a Query. * This is the representation seen in saved rules and in the rewriter. * 注意:在gram.y的裸输出中,testexpr只包含左表达式的裸形式,operName是组合操作符的字符串名称。 * 同时,子查询是裸parsetree。在解析分析期间, * 解析器转换testexpr为完整的布尔表达式用于比较左操作符值与PARAM_SUBLINK节点所代表的子查询输出列值。 * 子查询会转换为Query结构体。 * 在已存储的规则和重写时可见的表示形式。 * * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName * are unused and are always null. * 在EXISTS/EXPR/MULTEXPR/ARRAY SubLinks中,testexpr和operName不再使用通常是NULL值。 * * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in * other SubLinks. This number identifies different multiple-assignment * subqueries within an UPDATE statement's SET list. It is unique only * within a particular targetlist. The output column(s) of the MULTIEXPR * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist. * subLinkId当前只用于MULTIEXPR,在其他SubLinks中取值为0. * 该数字标识了在UPDATE语句SET链表中不同的多个赋值子查询。 * 只有在特定的targetlist内是唯一的。 * 出现在tlist其他地方的PARAM_MULTIEXPR参数依赖于MULTIEXPR的输出列。 * * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used * in SubPlans generated for WITH subqueries. * CTE_SUBLINK不会出现在实际的SubLink节点中,但用于WITH子查询所产生的SubPlans中。 */typedef enum SubLinkType{ EXISTS_SUBLINK, ALL_SUBLINK, ANY_SUBLINK, ROWCOMPARE_SUBLINK, EXPR_SUBLINK, MULTIEXPR_SUBLINK, ARRAY_SUBLINK, CTE_SUBLINK /* 仅用于SubPlans中;for SubPlans only */} SubLinkType;

SubLink
SubLink结构体

typedef struct SubLink{ Expr xpr; SubLinkType subLinkType; /* see above */ int subLinkId; /* ID (1..n); 0 if not MULTIEXPR */ Node *testexpr; /* outer-query test for ALL/ANY/ROWCOMPARE */ List *operName; /* originally specified operator name */ Node *subselect; /* subselect as Query* or raw parsetree */ int location; /* token location, or -1 if unknown */} SubLink;

MaterialState
Material状态

/* ---------------- * MaterialState information * * materialize nodes are used to materialize the results * of a subplan into a temporary file. * materialize节点用于物化subplan的结果为临时文件。 * * ss.ss_ScanTupleSlot refers to output of underlying plan. * ss.ss_ScanTupleSlot指向underlyling plan的输出(subplan) * ---------------- */typedef struct MaterialState{ ScanState ss; /* its first field is NodeTag */ int eflags; /* 传递给tuplestore的capability标记;capability flags to pass to tuplestore */ bool eof_underlying; /* 已经到达underlying plan的末尾?reached end of underlying plan? */ Tuplestorestate *tuplestorestate;} MaterialState;

Tuplestorestate
Tuplestore相关操作的私有状态。

/* * Possible states of a Tuplestore object. These denote the states that * persist between calls of Tuplestore routines. */typedef enum{ TSS_INMEM, /* Tuples still fit in memory */ TSS_WRITEFILE, /* Writing to temp file */ TSS_READFILE /* Reading from temp file */} TupStoreStatus;/* * Private state of a Tuplestore operation. */struct Tuplestorestate{ TupStoreStatus status; /* 状态枚举值;enumerated value as shown above */ int eflags; /* capability flags (OR of pointers' flags) */ bool backward; /* store extra length words in file? */ bool interXact; /* keep open through transactions? */ bool truncated; /* tuplestore_trim has removed tuples? */ int64 availMem; /* remaining memory available, in bytes */ int64 allowedMem; /* total memory allowed, in bytes */ int64 tuples; /* number of tuples added */ BufFile *myfile; /* underlying file, or NULL if none */ MemoryContext context; /* memory context for holding tuples */ ResourceOwner resowner; /* resowner for holding temp files */ /* * These function pointers decouple the routines that must know what kind * of tuple we are handling from the routines that don't need to know it. * They are set up by the tuplestore_begin_xxx routines. * * (Although tuplestore.c currently only supports heap tuples, I've copied * this part of tuplesort.c so that extension to other kinds of objects * will be easy if it's ever needed.) * * Function to copy a supplied input tuple into palloc'd space. (NB: we * assume that a single pfree() is enough to release the tuple later, so * the representation must be "flat" in one palloc chunk.) state->availMem * must be decreased by the amount of space used. */ void *(*copytup) (Tuplestorestate *state, void *tup); /* * Function to write a stored tuple onto tape. The representation of the * tuple on tape need not be the same as it is in memory; requirements on * the tape representation are given below. After writing the tuple, * pfree() it, and increase state->availMem by the amount of memory space * thereby released. */ void (*writetup) (Tuplestorestate *state, void *tup); /* * Function to read a stored tuple from tape back into memory. 'len' is * the already-read length of the stored tuple. Create and return a * palloc'd copy, and decrease state->availMem by the amount of memory * space consumed. */ void *(*readtup) (Tuplestorestate *state, unsigned int len); /* * This array holds pointers to tuples in memory if we are in state INMEM. * In states WRITEFILE and READFILE it's not used. * * When memtupdeleted > 0, the first memtupdeleted pointers are already * released due to a tuplestore_trim() operation, but we haven't expended * the effort to slide the remaining pointers down. These unused pointers * are set to NULL to catch any invalid accesses. Note that memtupcount * includes the deleted pointers. */ void **memtuples; /* array of pointers to palloc'd tuples */ int memtupdeleted; /* the first N slots are currently unused */ int memtupcount; /* number of tuples currently present */ int memtupsize; /* allocated length of memtuples array */ bool growmemtuples; /* memtuples' growth still underway? */ /* * These variables are used to keep track of the current positions. * * In state WRITEFILE, the current file seek position is the write point; * in state READFILE, the write position is remembered in writepos_xxx. * (The write position is the same as EOF, but since BufFileSeek doesn't * currently implement SEEK_END, we have to remember it explicitly.) */ TSReadPointer *readptrs; /* array of read pointers */ int activeptr; /* index of the active read pointer */ int readptrcount; /* number of pointers currently valid */ int readptrsize; /* allocated length of readptrs array */ int writepos_file; /* file# (valid if READFILE state) */ off_t writepos_offset; /* offset (valid if READFILE state) */};#define COPYTUP(state,tup) ((*(state)->copytup) (state, tup))#define WRITETUP(state,tup) ((*(state)->writetup) (state, tup))#define READTUP(state,len) ((*(state)->readtup) (state, len))#define LACKMEM(state) ((state)->availMem < 0)#define USEMEM(state,amt) ((state)->availMem -= (amt))#define FREEMEM(state,amt) ((state)->availMem += (amt))

TSReadPointer
tuplestore读指针

/* * Possible states of a Tuplestore object. These denote the states that * persist between calls of Tuplestore routines. */typedef enum{ TSS_INMEM, /* Tuples still fit in memory */ TSS_WRITEFILE, /* Writing to temp file */ TSS_READFILE /* Reading from temp file */} TupStoreStatus;/* * State for a single read pointer. If we are in state INMEM then all the * read pointers' "current" fields denote the read positions. In state * WRITEFILE, the file/offset fields denote the read positions. In state * READFILE, inactive read pointers have valid file/offset, but the active * read pointer implicitly has position equal to the temp file's seek position. * * Special case: if eof_reached is true, then the pointer's read position is * implicitly equal to the write position, and current/file/offset aren't * maintained. This way we need not update all the read pointers each time * we write. */typedef struct{ int eflags; /* capability flags */ bool eof_reached; /* read has reached EOF */ int current; /* next array index to read */ int file; /* temp file# */ off_t offset; /* byte offset in file */} TSReadPointer;二、源码解读

NOT IN在实际执行时会转换为ALL_SUBLINK,执行的快慢取决于什么时候会碰到符合条件的记录,一旦遇到马上返回。因此,SQL的执行时间与数据表的扫描顺序有紧密的关系,符合条件的行越早出现,程序越早返回,需要的时间越短。
相关代码如下:

... //解析表达式 rowresult = ExecEvalExprSwitchContext(node->testexpr, econtext, &rownull); if (subLinkType == ANY_SUBLINK) { //ANY : 使用OR语义组合 /* combine across rows per OR semantics */ if (rownull) *isNull = true; else if (DatumGetBool(rowresult)) { result = BoolGetDatum(true); *isNull = false; break; /* needn't look at any more rows */ } }

如上代码所示,在全表扫描物化的时候一旦textexpr表达式测试到其中一行满足条件,那么就会马上退出循环,而这一行如果非常幸运的出现在扫描的最开始的地方,那执行时间将会很快(扫描几个数据块 vs 全表扫描)。

新建一张表,插入2条记录,其中id = 2的行出现在block编号最小的地方,而id = 1出现在block编号最大的地方,这时候pg就会出现时快时慢的情况,两者相差3个数量级。

[local]:5432 pg12@testdb=# create table tbl3(id int);CREATE TABLETime: 1.852 ms[local]:5432 pg12@testdb=# insert into tbl3 values(1);INSERT 0 1Time: 1.276 ms[local]:5432 pg12@testdb=# insert into tbl3 values(2);INSERT 0 1Time: 1.089 ms[local]:5432 pg12@testdb=# select * from tbl3 where id not in (select b.id from t_big_null b); id ----(0 rows)Time: 3.676 ms[local]:5432 pg12@testdb=# select * from tbl3 where id not in (select b.id from t_big_null b); id ----(0 rows)Time: 4925.893 ms (00:04.926)[local]:5432 pg12@testdb=# select * from tbl3 where id not in (select b.id from t_big_null b); id ----(0 rows)Time: 2.858 ms[local]:5432 pg12@testdb=# select * from tbl3 where id not in (select b.id from t_big_null b); id ----(0 rows)Time: 4588.436 ms (00:04.588)[local]:5432 pg12@testdb=# select * from tbl3 where id not in (select b.id from t_big_null b); id ----(0 rows)Time: 1.896 ms[local]:5432 pg12@testdb=# select * from tbl3 where id not in (select b.id from t_big_null b); id ----(0 rows)Time: 4653.525 ms (00:04.654)[local]:5432 pg12@testdb=#

ExecScanSubPlan

/* * ExecScanSubPlan: default case where we have to rescan subplan each time * 默认情况下每次都不得不重新扫描subplan */static DatumExecScanSubPlan(SubPlanState *node, ExprContext *econtext, bool *isNull){ SubPlan *subplan = node->subplan;//子计划 PlanState *planstate = node->planstate;//计划运行期状态 SubLinkType subLinkType = subplan->subLinkType;//子链接类型 MemoryContext oldcontext;//原内存上下文 TupleTableSlot *slot;//元组slot Datum result;//结果指针 bool found = false; /* 如找到至少一个元组,则返回T;true if got at least one subplan tuple */ ListCell *pvar;//临时变量 ListCell *l;//临时变量 ArrayBuildStateAny *astate = NULL;// /* * MULTIEXPR subplans, when "executed", just return NULL; but first we * mark the subplan's output parameters as needing recalculation. (This * is a bit of a hack: it relies on the subplan appearing later in its * targetlist than any of the referencing Params, so that all the Params * have been evaluated before we re-mark them for the next evaluation * cycle. But in general resjunk tlist items appear after non-resjunk * ones, so this should be safe.) Unlike ExecReScanSetParamPlan, we do * *not* set bits in the parent plan node's chgParam, because we don't * want to cause a rescan of the parent. * * MULTIEXPR处理逻辑 */ if (subLinkType == MULTIEXPR_SUBLINK) { EState *estate = node->parent->state; foreach(l, subplan->setParam) { int paramid = lfirst_int(l); ParamExecData *prm = &(estate->es_param_exec_vals[paramid]); prm->execPlan = node; } *isNull = true; return (Datum) 0; } /* Initialize ArrayBuildStateAny in caller's context, if needed */ //数组 if (subLinkType == ARRAY_SUBLINK) astate = initArrayResultAny(subplan->firstColType, CurrentMemoryContext, true); /* * We are probably in a short-lived expression-evaluation context. Switch * to the per-query context for manipulating the child plan's chgParam, * calling ExecProcNode on it, etc. */ //切换上下文 oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory); /* * Set Params of this plan from parent plan correlation values. (Any * calculation we have to do is done in the parent econtext, since the * Param values don't need to have per-query lifetime.) */ //通过父计划相关值中设置子计划参数 Assert(list_length(subplan->parParam) == list_length(node->args)); forboth(l, subplan->parParam, pvar, node->args) { int paramid = lfirst_int(l); ParamExecData *prm = &(econtext->ecxt_param_exec_vals[paramid]); prm->value = ExecEvalExprSwitchContext((ExprState *) lfirst(pvar), econtext, &(prm->isnull)); planstate->chgParam = bms_add_member(planstate->chgParam, paramid); } /* * Now that we've set up its parameters, we can reset the subplan. */ //执行ReScan //Reset a plan node so that its output can be re-scanned. ExecReScan(planstate); /* * For all sublink types except EXPR_SUBLINK and ARRAY_SUBLINK, the result * is boolean as are the results of the combining operators. We combine * results across tuples (if the subplan produces more than one) using OR * semantics for ANY_SUBLINK or AND semantics for ALL_SUBLINK. * (ROWCOMPARE_SUBLINK doesn't allow multiple tuples from the subplan.) * NULL results from the combining operators are handled according to the * usual SQL semantics for OR and AND. The result for no input tuples is * FALSE for ANY_SUBLINK, TRUE for ALL_SUBLINK, NULL for * ROWCOMPARE_SUBLINK. * 除EXPR_SUBLINK和ARRAY_SUBLINK外的所有sublink,结果是布尔值(组合运算符的结果). * PG通过跨元组(如子计划产生多个元组)合并结果,对于ANY_SUBLINK使用OR语义,ALL_SUBLINK则使用AND语义. * (ROWCOMPARE_SUBLINK不允许子计划返回多个元组) * 从组合操作符中返回的NULL遵循SQL中的OR和AND语义. * 如没有输入元组,ANY_SUBLINK为FALSE,ALL_SUBLINK为TRUE,ROWCOMPARE_SUBLINK为NULL. * * For EXPR_SUBLINK we require the subplan to produce no more than one * tuple, else an error is raised. If zero tuples are produced, we return * NULL. Assuming we get a tuple, we just use its first column (there can * be only one non-junk column in this case). * 对于EXPR_SUBLINK,需要subplan产生不超过一个元组,否则报错.如果没有元组产生,返回NULL. * 假定获取到一个元组,则使用第一个列(这种情况下只有一个non-junk列). * * For ARRAY_SUBLINK we allow the subplan to produce any number of tuples, * and form an array of the first column's values. Note in particular * that we produce a zero-element array if no tuples are produced (this is * a change from pre-8.3 behavior of returning NULL). * 对于ARRAY_SUBLINK,允许subplan产生任意数目的元组,使用第一个列值组成数组. * 特别注意的是如没有元组产生则产生0个元素的数组(8.3以前是返回NULL). */ result = BoolGetDatum(subLinkType == ALL_SUBLINK);//ALL为T,否则为F *isNull = false; for (slot = ExecProcNode(planstate); !TupIsNull(slot); slot = ExecProcNode(planstate))//循环获取元组,直至没有元组为NULL(即已完成) { //元组描述符 TupleDesc tdesc = slot->tts_tupleDescriptor; Datum rowresult;//结果 bool rownull;//是否为空? int col;//列计数器 ListCell *plst;//临时变量 if (subLinkType == EXISTS_SUBLINK)//EXISTS { found = true; result = BoolGetDatum(true); break; } if (subLinkType == EXPR_SUBLINK)//EXPR表达式 { /* cannot allow multiple input tuples for EXPR sublink */ if (found) ereport(ERROR, (errcode(ERRCODE_CARDINALITY_VIOLATION), errmsg("more than one row returned by a subquery used as an expression"))); found = true; /* * We need to copy the subplan's tuple in case the result is of * pass-by-ref type --- our return value will point into this * copied tuple! Can't use the subplan's instance of the tuple * since it won't still be valid after next ExecProcNode() call. * node->curTuple keeps track of the copied tuple for eventual * freeing. */ if (node->curTuple) heap_freetuple(node->curTuple); node->curTuple = ExecCopySlotHeapTuple(slot); result = heap_getattr(node->curTuple, 1, tdesc, isNull); /* keep scanning subplan to make sure there's only one tuple */ continue; } if (subLinkType == ARRAY_SUBLINK)//数组 { Datum dvalue; bool disnull; found = true; /* stash away current value */ Assert(subplan->firstColType == TupleDescAttr(tdesc, 0)->atttypid); dvalue = slot_getattr(slot, 1, &disnull); astate = accumArrayResultAny(astate, dvalue, disnull, subplan->firstColType, oldcontext); /* keep scanning subplan to collect all values */ continue; } /* cannot allow multiple input tuples for ROWCOMPARE sublink either */ if (subLinkType == ROWCOMPARE_SUBLINK && found)//行比较 ereport(ERROR, (errcode(ERRCODE_CARDINALITY_VIOLATION), errmsg("more than one row returned by a subquery used as an expression"))); found = true;//初始为T /* * For ALL, ANY, and ROWCOMPARE sublinks, load up the Params * representing the columns of the sub-select, and then evaluate the * combining expression. * 对于ALL,ANY和ROWCOMPARE子链接,加载表示子查询列的Params,并解析组合表达式 */ col = 1;//列从1计数 foreach(plst, subplan->paramIds)//循环遍历子查询参数 { int paramid = lfirst_int(plst); ParamExecData *prmdata; prmdata = &(econtext->ecxt_param_exec_vals[paramid]); Assert(prmdata->execPlan == NULL); //获取参数值 prmdata->value = slot_getattr(slot, col, &(prmdata->isnull)); //下一个列 col++; } //解析表达式 rowresult = ExecEvalExprSwitchContext(node->testexpr, econtext, &rownull); if (subLinkType == ANY_SUBLINK) { //ANY : 使用OR语义组合 /* combine across rows per OR semantics */ if (rownull) *isNull = true; else if (DatumGetBool(rowresult)) { result = BoolGetDatum(true); *isNull = false; break; /* needn't look at any more rows */ } } else if (subLinkType == ALL_SUBLINK) { //ALL : 使用AND语义 /* combine across rows per AND semantics */ if (rownull) *isNull = true; else if (!DatumGetBool(rowresult)) { result = BoolGetDatum(false); *isNull = false; break; /* needn't look at any more rows */ } } else { /* must be ROWCOMPARE_SUBLINK */ //这里一定是ROWCOMPARE result = rowresult; *isNull = rownull; } } MemoryContextSwitchTo(oldcontext); if (subLinkType == ARRAY_SUBLINK) { /* We return the result in the caller's context */ //在调用者上下文中返回结果 result = makeArrayResultAny(astate, oldcontext, true); } else if (!found) { /* * deal with empty subplan result. result/isNull were previously * initialized correctly for all sublink types except EXPR and * ROWCOMPARE; for those, return NULL. * subplan没有结果返回,设置result&isNull值 */ if (subLinkType == EXPR_SUBLINK || subLinkType == ROWCOMPARE_SUBLINK) { result = (Datum) 0; *isNull = true; } } //返回结果 return result;}三、跟踪分析

执行SQL:

[local]:5432 pg12@testdb=# select * from tbl a where a.id not in (select b.id from t_big_null b);

启动gdb跟踪,设置断点,观察到断点hit 1760次后就会退出,因此设置为忽略前1758次,只跟踪最后2次。

(gdb) info bNum Type Disp Enb Address What13 breakpoint keep y 0x0000000000721126 in ExecMaterial at nodeMaterial.c:150 breakpoint already hit 1760 times ignore next 3360 hits...(gdb) b nodeSubplan.c:328Breakpoint 17 at 0x7303b9: file nodeSubplan.c, line 328.(gdb) del 16(gdb) info bNum Type Disp Enb Address What17 breakpoint keep y 0x00000000007303b9 in ExecScanSubPlan at nodeSubplan.c:328(gdb) ignore 17 1758Will ignore next 1758 crossings of breakpoint 17.(gdb) cContinuing.

开始跟踪,这是第1759次,这时候从SubPlan获取的数据是id = 10000000

Breakpoint 17, ExecScanSubPlan (node=0x3069268, econtext=0x3068aa0, isNull=0x3068dbd) at nodeSubplan.c:328328 TupleDesc tdesc = slot->tts_tupleDescriptor;(gdb) n334 if (subLinkType == EXISTS_SUBLINK)(gdb) 341 if (subLinkType == EXPR_SUBLINK)(gdb) 367 if (subLinkType == ARRAY_SUBLINK)(gdb) 383 if (subLinkType == ROWCOMPARE_SUBLINK && found)(gdb) 388 found = true;(gdb) 395 col = 1;(gdb) 396 foreach(plst, subplan->paramIds)(gdb) 398 int paramid = lfirst_int(plst);(gdb) 401 prmdata = &(econtext->ecxt_param_exec_vals[paramid]);(gdb) 402 Assert(prmdata->execPlan == NULL);(gdb) 403 prmdata->value = slot_getattr(slot, col, &(prmdata->isnull));(gdb) p *prmdata$109 = {execPlan = 0x0, value = 9999999, isnull = false}(gdb) n404 col++;(gdb) p *prmdata$110 = {execPlan = 0x0, value = 10000000, isnull = false}(gdb) n396 foreach(plst, subplan->paramIds)(gdb)

解析表达式

407 rowresult = ExecEvalExprSwitchContext(node->testexpr, econtext,(gdb) stepExecEvalExprSwitchContext (state=0x3069380, econtext=0x3068aa0, isNull=0x7ffd184750ef) at ../../../src/include/executor/executor.h:306306 oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);(gdb) n307 retDatum = state->evalfunc(state, econtext, isNull);(gdb) stepExecInterpExpr (state=0x3069380, econtext=0x3068aa0, isnull=0x7ffd184750ef) at execExprInterp.c:404404 if (unlikely(state == NULL))(gdb) n411 op = state->steps;(gdb) p *state$111 = {tag = {type = T_ExprState}, flags = 6 '\006', resnull = false, resvalue = 0, resultslot = 0x0, steps = 0x3069418, evalfunc = 0x6e2d4d <ExecInterpExpr>, expr = 0x30917a8, evalfunc_private = 0x6e2d4d <ExecInterpExpr>, steps_len = 5, steps_alloc = 16, parent = 0x3068988, ext_params = 0x0, innermost_caseval = 0x0, innermost_casenull = 0x0, innermost_domainval = 0x0, innermost_domainnull = 0x0}(gdb) n412 resultslot = state->resultslot;(gdb) 413 innerslot = econtext->ecxt_innertuple;(gdb) 414 outerslot = econtext->ecxt_outertuple;(gdb) 415 scanslot = econtext->ecxt_scantuple;(gdb) p *innerslotCannot access memory at address 0x0(gdb) p *outerslotCannot access memory at address 0x0(gdb) n418 EEO_DISPATCH();(gdb) p *scanslot$112 = {type = T_TupleTableSlot, tts_flags = 16, tts_nvalid = 1, tts_ops = 0xc3e780 <TTSOpsBufferHeapTuple>, tts_tupleDescriptor = 0x7fab449c99f0, tts_values = 0x3068bd0, tts_isnull = 0x3068be0, tts_mcxt = 0x3067da0, tts_tid = { ip_blkid = {bi_hi = 0, bi_lo = 0}, ip_posid = 2}, tts_tableOid = 40960}(gdb) p *scanslot->tts_values$113 = 1(gdb) n448 CheckOpSlotCompatibility(op, scanslot);(gdb) n450 slot_getsomeattrs(scanslot, op->d.fetch.last_var);(gdb) 452 EEO_NEXT();(gdb) 487 int attnum = op->d.var.attnum;(gdb) 491 Assert(attnum >= 0 && attnum < scanslot->tts_nvalid);(gdb) 492 *op->resvalue = scanslot->tts_values[attnum];(gdb) 493 *op->resnull = scanslot->tts_isnull[attnum];(gdb) 495 EEO_NEXT();(gdb) p *op->resvalue$114 = 1(gdb) n962 ExecEvalParamExec(state, op, econtext);(gdb) 964 EEO_NEXT();(gdb) p *op$115 = {opcode = 7224136, resvalue = 0x30698b8, resnull = 0x30698c0, d = {fetch = { last_var = 0, fixed = 23, known_desc = 0x0, kind = 0x0}, var = {attnum = 0, vartype = 23}, wholerow = {var = 0x1700000000, first = false, slow = false, tupdesc = 0x0, junkFilter = 0x0}, assign_var = {resultnum = 0, attnum = 23}, assign_tmp = {resultnum = 0}, constval = {value = 98784247808, isnull = false}, func = {finfo = 0x1700000000, fcinfo_data = 0x0, fn_addr = 0x0, nargs = 0}, boolexpr = {anynull = 0x1700000000, jumpdone = 0}, qualexpr = {jumpdone = 0}, jump = { jumpdone = 0}, nulltest_row = {argdesc = 0x1700000000}, param = {paramid = 0, paramtype = 23}, cparam = {paramfunc = 0x1700000000, paramarg = 0x0, paramid = 0, paramtype = 0}, casetest = {value = 0x1700000000, isnull = 0x0}, make_readonly = { value = 0x1700000000, isnull = 0x0}, iocoerce = {finfo_out = 0x1700000000, fcinfo_data_out = 0x0, finfo_in = 0x0, fcinfo_data_in = 0x0}, sqlvaluefunction = { svf = 0x1700000000}, nextvalueexpr = {seqid = 0, seqtypid = 23}, arrayexpr = { elemvalues = 0x1700000000, elemnulls = 0x0, nelems = 0, elemtype = 0, elemlength = 0, elembyval = false, elemalign = 0 '\000', multidims = false}, arraycoerce = {elemexprstate = 0x1700000000, resultelemtype = 0, amstate = 0x0}, row = {tupdesc = 0x1700000000, elemvalues = 0x0, elemnulls = 0x0}, rowcompare_step = { finfo = 0x1700000000, fcinfo_data = 0x0, fn_addr = 0x0, jumpnull = 0, jumpdone = 0}, rowcompare_final = {rctype = 0}, minmax = {values = 0x1700000000, nulls = 0x0, nelems = 0, op = IS_GREATEST, finfo = 0x0, fcinfo_data = 0x0}, fieldselect = {fieldnum = 0, resulttype = 23, argdesc = 0x0}, fieldstore = { fstore = 0x1700000000, argdesc = 0x0, values = 0x0, nulls = 0x0, ncolumns = 0}, sbsref_subscript = {state = 0x1700000000, off = 0, isupper = false, jumpdone = 0}, sbsref = {state = 0x1700000000}, domaincheck = { constraintname = 0x1700000000 <Address 0x1700000000 out of bounds>, checkvalue = 0x0, checknull = 0x0, resulttype = 0}, convert_rowtype = { convert = 0x1700000000, indesc = 0x0, outdesc = 0x0, map = 0x0, initialized = false}, scalararrayop = {element_type = 0, useOr = 23, typlen = 0, typbyval = false, typalign = 0 '\000', finfo = 0x0, fcinfo_data = 0x0, fn_addr = 0x0}, xmlexpr = {xexpr = 0x1700000000, named_argvalue = 0x0, named_argnull = 0x0, argvalue = 0x0, argnull = 0x0}, aggref = { astate = 0x1700000000}, grouping_func = {parent = 0x1700000000, clauses = 0x0}, window_func = {wfstate = 0x1700000000}, subplan = {sstate = 0x1700000000}, alternative_subplan = {asstate = 0x1700000000}, agg_deserialize = { aggstate = 0x1700000000, fcinfo_data = 0x0, jumpnull = 0}, agg_strict_input_check = {args = 0x1700000000, nulls = 0x0, nargs = 0, jumpnull = 0}, agg_init_trans = {aggstate = 0x1700000000, pertrans = 0x0, aggcontext = 0x0, setno = 0, transno = 0, setoff = 0, jumpnull = 0}, agg_strict_trans_check = { aggstate = 0x1700000000, setno = 0, transno = 0, setoff = 0, jumpnull = 0}, agg_trans = {aggstate = 0x1700000000, pertrans = 0x0, aggcontext = 0x0, setno = 0, transno = 0, setoff = 0}}}(gdb) p *state$116 = {tag = {type = T_ExprState}, flags = 6 '\006', resnull = false, resvalue = 0, resultslot = 0x0, steps = 0x3069418, evalfunc = 0x6e2d4d <ExecInterpExpr>, expr = 0x30917a8, evalfunc_private = 0x6e2d4d <ExecInterpExpr>, steps_len = 5, steps_alloc = 16, parent = 0x3068988, ext_params = 0x0, innermost_caseval = 0x0, innermost_casenull = 0x0, innermost_domainval = 0x0, innermost_domainnull = 0x0}(gdb) n634 FunctionCallInfo fcinfo = op->d.func.fcinfo_data;(gdb) 635 NullableDatum *args = fcinfo->args;(gdb) p *fcinfo$117 = {flinfo = 0x3069830, context = 0x0, resultinfo = 0x0, fncollation = 0, isnull = false, nargs = 2, args = 0x30698a8}(gdb) p *fcinfo->args$118 = {value = 1, isnull = false}(gdb) n640 for (argno = 0; argno < op->d.func.nargs; argno++)(gdb) p op->d.func.nargs$119 = 2(gdb) p *op$120 = {opcode = 7222440, resvalue = 0x3069388, resnull = 0x3069385, d = {fetch = { last_var = 50763824, fixed = false, known_desc = 0x3069888, kind = 0x96c2b2 <int4eq>}, var = {attnum = 50763824, vartype = 0}, wholerow = { var = 0x3069830, first = 136, slow = 152, tupdesc = 0x96c2b2 <int4eq>, junkFilter = 0x2}, assign_var = {resultnum = 50763824, attnum = 0}, assign_tmp = { resultnum = 50763824}, constval = {value = 50763824, isnull = 136}, func = { finfo = 0x3069830, fcinfo_data = 0x3069888, fn_addr = 0x96c2b2 <int4eq>, nargs = 2}, boolexpr = {anynull = 0x3069830, jumpdone = 50763912}, qualexpr = { jumpdone = 50763824}, jump = {jumpdone = 50763824}, nulltest_row = { argdesc = 0x3069830}, param = {paramid = 50763824, paramtype = 0}, cparam = { paramfunc = 0x3069830, paramarg = 0x3069888, paramid = 9880242, paramtype = 0}, casetest = {value = 0x3069830, isnull = 0x3069888}, make_readonly = { value = 0x3069830, isnull = 0x3069888}, iocoerce = {finfo_out = 0x3069830, fcinfo_data_out = 0x3069888, finfo_in = 0x96c2b2 <int4eq>, fcinfo_data_in = 0x2}, sqlvaluefunction = {svf = 0x3069830}, nextvalueexpr = {seqid = 50763824, seqtypid = 0}, arrayexpr = {elemvalues = 0x3069830, elemnulls = 0x3069888, nelems = 9880242, elemtype = 0, elemlength = 2, elembyval = false, elemalign = 0 '\000', multidims = false}, arraycoerce = {elemexprstate = 0x3069830, resultelemtype = 50763912, amstate = 0x96c2b2 <int4eq>}, row = { tupdesc = 0x3069830, elemvalues = 0x3069888, elemnulls = 0x96c2b2 <int4eq>}, rowcompare_step = {finfo = 0x3069830, fcinfo_data = 0x3069888, fn_addr = 0x96c2b2 <int4eq>, jumpnull = 2, jumpdone = 0}, rowcompare_final = { rctype = 50763824}, minmax = {values = 0x3069830, nulls = 0x3069888, nelems = 9880242, op = IS_GREATEST, finfo = 0x2, fcinfo_data = 0x0}, fieldselect = { fieldnum = -26576, resulttype = 0, argdesc = 0x3069888}, fieldstore = { fstore = 0x3069830, argdesc = 0x3069888, values = 0x96c2b2 <int4eq>, nulls = 0x2, ncolumns = 0}, sbsref_subscript = {state = 0x3069830, off = 50763912, isupper = false, jumpdone = 9880242}, sbsref = {state = 0x3069830}, domaincheck = { constraintname = 0x3069830 "\262\302\226", checkvalue = 0x3069888, checknull = 0x96c2b2 <int4eq>, resulttype = 2}, convert_rowtype = { convert = 0x3069830, indesc = 0x3069888, outdesc = 0x96c2b2 <int4eq>, map = 0x2, initialized = false}, scalararrayop = {element_type = 50763824, useOr = false, typlen = 0, typbyval = 136, typalign = -104 '\230', finfo = 0x96c2b2 <int4eq>, fcinfo_data = 0x2, fn_addr = 0x0}, xmlexpr = {xexpr = 0x3069830, named_argvalue = 0x3069888, named_argnull = 0x96c2b2 <int4eq>, argvalue = 0x2, argnull = 0x0}, aggref = {astate = 0x3069830}, grouping_func = {parent = 0x3069830, clauses = 0x3069888}, window_func = {wfstate = 0x3069830}, subplan = { sstate = 0x3069830}, alternative_subplan = {asstate = 0x3069830}, agg_deserialize = {aggstate = 0x3069830, fcinfo_data = 0x3069888, jumpnull = 9880242}, agg_strict_input_check = {args = 0x3069830, nulls = 0x3069888, nargs = 9880242, jumpnull = 0}, agg_init_trans = {aggstate = 0x3069830, pertrans = 0x3069888, aggcontext = 0x96c2b2 <int4eq>, setno = 2, transno = 0, setoff = 0, jumpnull = 0}, agg_strict_trans_check = {aggstate = 0x3069830, setno = 50763912, transno = 0, setoff = 9880242, jumpnull = 0}, agg_trans = { aggstate = 0x3069830, pertrans = 0x3069888, aggcontext = 0x96c2b2 <int4eq>, setno = 2, transno = 0, setoff = 0}}}(gdb) p op->d->func$121 = {finfo = 0x3069830, fcinfo_data = 0x3069888, fn_addr = 0x96c2b2 <int4eq>, nargs = 2}(gdb) p op->d->func->finfo$122 = (FmgrInfo *) 0x3069830(gdb) p *op->d->func->finfo$123 = {fn_addr = 0x96c2b2 <int4eq>, fn_oid = 65, fn_nargs = 2, fn_strict = true, fn_retset = false, fn_stats = 2 '\002', fn_extra = 0x0, fn_mcxt = 0x3067da0, fn_expr = 0x30917a8}(gdb) p *op->d->func->fcinfo_data$124 = {flinfo = 0x3069830, context = 0x0, resultinfo = 0x0, fncollation = 0, isnull = false, nargs = 2, args = 0x30698a8}(gdb) p *op->d->func->fcinfo_data->flinfo$125 = {fn_addr = 0x96c2b2 <int4eq>, fn_oid = 65, fn_nargs = 2, fn_strict = true, fn_retset = false, fn_stats = 2 '\002', fn_extra = 0x0, fn_mcxt = 0x3067da0, fn_expr = 0x30917a8}(gdb) p *op->d->func->fcinfo_data->args$126 = {value = 1, isnull = false}(gdb) n642 if (args[argno].isnull)(gdb) 640 for (argno = 0; argno < op->d.func.nargs; argno++)(gdb) 642 if (args[argno].isnull)(gdb) 640 for (argno = 0; argno < op->d.func.nargs; argno++)(gdb) 648 fcinfo->isnull = false;(gdb) p *args$127 = {value = 1, isnull = false}(gdb) n649 d = op->d.func.fn_addr(fcinfo);(gdb) 650 *op->resvalue = d;(gdb) p d$128 = 0(gdb) n651 *op->resnull = fcinfo->isnull;(gdb) 654 EEO_NEXT();(gdb) 425 goto out;(gdb) n1747 *isnull = state->resnull;(gdb) 1748 return state->resvalue;(gdb) p *state$129 = {tag = {type = T_ExprState}, flags = 6 '\006', resnull = false, resvalue = 0, resultslot = 0x0, steps = 0x3069418, evalfunc = 0x6e2d4d <ExecInterpExpr>, expr = 0x30917a8, evalfunc_private = 0x6e2d4d <ExecInterpExpr>, steps_len = 5, steps_alloc = 16, parent = 0x3068988, ext_params = 0x0, innermost_caseval = 0x0, innermost_casenull = 0x0, innermost_domainval = 0x0, innermost_domainnull = 0x0}(gdb) n1749 }(gdb) ExecEvalExprSwitchContext (state=0x3069380, econtext=0x3068aa0, isNull=0x7ffd184750ef) at ../../../src/include/executor/executor.h:308308 MemoryContextSwitchTo(oldContext);(gdb) 309 return retDatum;(gdb) p retDatum$130 = 0(gdb) n310 }(gdb)

这是第1760次调用

ExecScanSubPlan (node=0x3069268, econtext=0x3068aa0, isNull=0x3068dbd) at nodeSubplan.c:410410 if (subLinkType == ANY_SUBLINK)(gdb) 413 if (rownull)(gdb) 415 else if (DatumGetBool(rowresult))(gdb) p rowresult$131 = 0(gdb) n326 slot = ExecProcNode(planstate))(gdb) 324 for (slot = ExecProcNode(planstate);(gdb) 325 !TupIsNull(slot);(gdb) Breakpoint 17, ExecScanSubPlan (node=0x3069268, econtext=0x3068aa0, isNull=0x3068dbd) at nodeSubplan.c:328328 TupleDesc tdesc = slot->tts_tupleDescriptor;(gdb) 334 if (subLinkType == EXISTS_SUBLINK)(gdb) 341 if (subLinkType == EXPR_SUBLINK)(gdb) 367 if (subLinkType == ARRAY_SUBLINK)(gdb) 383 if (subLinkType == ROWCOMPARE_SUBLINK && found)(gdb) 388 found = true;(gdb) 395 col = 1;(gdb) p *slot->tts_values$132 = 10000000 --> 上一次的数据(gdb) n396 foreach(plst, subplan->paramIds)(gdb) 398 int paramid = lfirst_int(plst);(gdb) 401 prmdata = &(econtext->ecxt_param_exec_vals[paramid]);(gdb) 402 Assert(prmdata->execPlan == NULL);(gdb) p *prmdata$133 = {execPlan = 0x0, value = 10000000, isnull = false}(gdb) n403 prmdata->value = slot_getattr(slot, col, &(prmdata->isnull));(gdb) 404 col++;(gdb) p *prmdata$134 = {execPlan = 0x0, value = 1, isnull = false} --> 本次数据,值为1(gdb) info bNum Type Disp Enb Address What17 breakpoint keep y 0x00000000007303b9 in ExecScanSubPlan at nodeSubplan.c:328 breakpoint already hit 1760 times(gdb) n396 foreach(plst, subplan->paramIds)(gdb) 407 rowresult = ExecEvalExprSwitchContext(node->testexpr, econtext,(gdb) 410 if (subLinkType == ANY_SUBLINK)(gdb) 413 if (rownull)(gdb) 415 else if (DatumGetBool(rowresult))(gdb) 417 result = BoolGetDatum(true);(gdb) 418 *isNull = false;(gdb) 419 break; /* needn't look at any more rows */(gdb) 442 MemoryContextSwitchTo(oldcontext);(gdb) 444 if (subLinkType == ARRAY_SUBLINK)(gdb) 449 else if (!found)(gdb) 464 return result;(gdb) (gdb) p result$135 = 1 --> 满足条件

DONE

四、参考资料

N/A