python分箱的方法?这个问题可能是我们日常学习或工作经常见到的。希望通过这个问题能让你收获颇深。下面是小编给大家带来的参考内容,让我们一起来看看吧!

1、数据分箱

数据分箱技术在Pandas官方给出的定义:Bin values into discrete intervals,是指将值划分到离散区间。好比不同大小的苹果归类到几个事先布置的箱子中;不同年龄的人划分到几个年龄段中。

这种技术在数据处理时会很有用。

2、例子

我们先来看例子

importnumpyasnpimportpandasaspdages=np.array([5,10,36,12,77,89,100,30,1])#年龄数据123

现把数据划分成 3 个区间,并打上老、中、青的标签。Pandas提供了易用的API,很容易就可以实现。

pd.cut(ages,3,labels=['青','中','老'])1

结果如下,一行代码便实现。

[青,青,中,青,老,老,老,青,青]1

cut在操作时,统计了一维数组的最小、最大值,得到一个区间长度,因为需要划分3个区间,所以会得到三个均匀的区间,如下。

pd.cut(ages,3)>>>区间如下:Categories(3,interval[float64]):[(0.901,34.0]<(34.0,67.0]<(67.0,100.0]]1234

给定数据的最小值为1,区间默认是左开右闭,所以为了囊括1,需要将最靠左的区间向左延长0.1%(总区间长度),默认精度为小数点后3位。

3、函数原型

通过以上例子初步认识cut后,再分析cut原型就比较容易。

参数含义如下:

x:被切分的类数组数据,注意必须是1维;

bins:简单理解为分箱规则,就是桶。支持int 标量、序列;

right:表示是否包含区间的右边界,默认包含;

labels:分割后的bins打标签;

retbins:表示是否将分割后的bins返回,默认不返回。如为True,则:

array([0.901,34.,67.,100.]))12345include_lowest:区间的左边是开还是闭,默认为开;duplicates;是否允许重复区间。raise:不允许,drop:允许。

感谢各位的阅读!看完上述内容,你们对python分箱的方法大概了解了吗?希望文章内容对大家有所帮助。如果想了解更多相关文章内容,欢迎关注亿速云行业资讯频道。