今天就跟大家聊聊有关Redis中如何配置Celery,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

以下撇开Web框架,介绍基于Redis配置Celery任务的方法。

pipinstallcelery[redis]

项目结构

$treeyour_projectyour_project├──__init__.py├──main.py├──celery.py└──tasks.py0directories,4files

其中,main.py是触发Task的业务代码。当然,文件名可以随意改。celery.py是Celery的app定义的位置,tasks.py是Task定义的位置,文件名不建议修改。

配置Celery

在celery.py中写入如下代码:

fromceleryimportCeleryfrom.settingsimportREDIS_URLAPP=Celery(main=__package__,broker=REDIS_URL,backend=REDIS_URL,include=[f'{__package__}.tasks'],)APP.conf.update(task_track_started=True)

其中,REDIS_URL从同一的配置settings.py中引入, 形式大概是redis://localhost:6379/0。这里既用Redis来当broker,又用来当backend。即,既当消息队列,又当结果反馈的数据库(默认仅保存1天)。

在include=,需要填一个下游worker的包名列表。这里选择了同一个包的tasks.py文件。

额外设置的task_track_started,是命令Worker反馈STARTED状态。默认情况下,是无法知道任务什么时候开始执行的。

编写任务并调用

在tasks.py文件中,添加异步任务的实现。

from.celeryimportAPP@APP.taskdefdo_sth():pass

在需要发起任务的地方,用.apply_async可以触发异步调用。即,实际只是向消息队列发送消息,真正的执行操作在远程。

fromcelery.resultimportAsyncResultfrom.tasksimprtdo_sthresult=do_sth.apply_async()assertisinstance(result,AsyncResult)

运行Worker:

celery-Ayour_projectworker

运行原理

一次Task从触发到完成,序列图如下:

其中,main代表业务代码主进程。它可能是Django、Flask这类Web服务,也可能是一个其它类型的进程。worker就是指Celery的Worker。

main发送消息后,会得到一个AsyncResult,其中包含task_id。仅通过task_id,也可以自己构造一个AsyncResult,查询相关信息。其中,代表运行过程的,主要是state。

worker会持续保持对Redis(或其它消息队列,如RabbitMQ)的关注,查询新的消息。如果获得新消息,将其消费后,开始运行do_sth。运行完成会把返回值对应的结果,以及一些运行信息,回写到Redis(或其它backend,如Django数据库等)上。在系统的任何地方,通过对应的AsyncResult(task_id)就可以查询到结果。

Celery Task的状态

以下是状态图:

其中,除SUCCESS外,还有失败(FAILURE)、取消(REVOKED)两个结束状态。而RETRY则是在设置了重试机制后,进入的临时等待状态。

另外,如果保存在Redis的结果信息被清理(默认仅保存1天),那么任务状态又会变成PENDING。这在设计上是个巨大的问题,使用时要做对应容错。

常见控制操作

result=AsyncResult(task_id)#阻塞等待返回result.wait()#取消任务result.revoke()#删除任务记录result.forget()

有时,在业务主进程中需要等待异步运行的结果,这时需要使用wait。如果要取消一个排队中、或已执行的任务,则可以使用revoke。即使任务已经执行完成,也可以使用revoke,但不会有任何变化。如果需要提前删除任务记录,可以使用forget。

看完上述内容,你们对Redis中如何配置Celery有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。