MongoDB数据库中索引和explain的示例分析
这篇文章主要介绍了MongoDB数据库中索引和explain的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
mongodb 索引使用
作用
索引通常能够极大的提高查询。
索引是一种数据结构,他搜集一个集合中文档特定字段的值。
B-Tree索引来实现。
创建索引
db.collection.createIndex(keys,options)
keys
keys由文档字段和索引类型组成。如{"name":1}
key 表示字段 value 1,-1 1表示升序,-1降序
options
options 创建索引的选项。
查看索引
db.collection.getIndexes()
{"v":1,"key":{"_id":1},"name":"_id_","ns":"leyue.userdatas"},{"v":1,"key":{"name":1//索引字段},"name":"name_1",//索引名称"ns":"leyue.userdatas"}
删除索引
db.collection.dropIndex(index)
删除指定的索引。
db.collection.dropIndexes()
删除除了_id 以外的所有索引。
index 是字符串 表示按照索引名称 name 删除字段。
index 是{字段名称:1} 表示按照key 删除索引。
创建/查看/删除 示例
查看数据
db.userdatas.find(){"_id":ObjectId("597f357a09c84cf58880e412"),"name":"u3","age":32}{"_id":ObjectId("597f357a09c84cf58880e411"),"name":"u4","age":30,"score":[7,4,2,0]}{"_id":ObjectId("597fcc0f411f2b2fd30d0b3f"),"age":20,"score":[7,4,2,0,10,9,8,7],"name":"lihao"}{"_id":ObjectId("597f357a09c84cf58880e413"),"name":"u2","age":33,"wendang":{"yw":80,"xw":90}}{"_id":ObjectId("5983f5c88eec53fbcd56a7ca"),"date":ISODate("2017-08-04T04:19:20.693Z")}{"_id":ObjectId("597f357a09c84cf58880e40e"),"name":"u1","age":26,"address":"中国砀山"}{"_id":ObjectId("597f357a09c84cf58880e40f"),"name":"u1","age":37,"score":[10,203,12,43,56,22]}{"_id":ObjectId("597f357a09c84cf58880e410"),"name":"u5","age":78,"address":"chinabeijingchaoyang"}
给字段name 创建索引
//创建索引db.userdatas.createIndex({"name":1}){"createdCollectionAutomatically":false,"numIndexesBefore":1,"numIndexesAfter":2,"ok":1}//查看索引db.userdatas.getIndexes()[{"v":1,"key":{"_id":1},"name":"_id_","ns":"leyue.userdatas"},{"v":1,"key":{"name":1},"name":"name_1","ns":"leyue.userdatas"}]
给字段name 创建索引并命名为myindex
db.userdatas.createIndex({"name":1})db.userdatas.createIndex({"name":1},{"name":"myindex"})db.userdatas.getIndexes()[{"v":1,"key":{"_id":1},"name":"_id_","ns":"leyue.userdatas"},{"v":1,"key":{"name":1},"name":"myindex","ns":"leyue.userdatas"}]
给字段name 创建索引 创建的过程在后台执行
当mongodb 集合里面的数据过大时 创建索引很耗时,可以在放在后台运行。
db.userdatas.dropIndex("myindex")db.userdatas.createIndex({"name":1},{"name":"myindex","background":true})
给age 字段创建唯一索引
db.userdatas.createIndex({"age":-1},{"name":"ageIndex","unique":true,"sparse":true})db.userdatas.getIndexes()[{"v":1,"key":{"_id":1},"name":"_id_","ns":"leyue.userdatas"},{"v":1,"key":{"name":1},"name":"myindex","ns":"leyue.userdatas","background":true},{"v":1,"unique":true,"key":{"age":-1},"name":"ageIndex","ns":"leyue.userdatas","sparse":true}]//插入一个已存在的agedb.userdatas.insert({"name":"u8","age":32})WriteResult({"nInserted":0,"writeError":{"code":11000,"errmsg":"E11000duplicatekeyerrorindex:leyue.userdatas.$ageIndexdupkey:{:32.0}"}})
创建复合索引
db.userdatas.createIndex({"name":1,"age":-1})db.userdatas.getIndexes()[{"v":1,"key":{"_id":1},"name":"_id_","ns":"leyue.userdatas"},{"v":1,"key":{"name":1,"age":-1},"name":"name_1_age_-1","ns":"leyue.userdatas"}]
所有的字段都存在集合 system.indexes 中
db.system.indexes.find(){"v":1,"key":{"_id":1},"name":"_id_","ns":"leyue.userdatas"}{"v":1,"key":{"_id":1},"name":"_id_","ns":"leyue.scores"}{"v":1,"key":{"_id":1},"name":"_id_","ns":"leyue.test"}{"v":1,"key":{"user":1,"name":1},"name":"myindex","ns":"leyue.test"}{"v":1,"key":{"_id":1},"name":"_id_","ns":"leyue.mycapped"}{"v":1,"key":{"user":1},"name":"user_1","ns":"leyue.test"}{"v":1,"key":{"name":1},"name":"myindex","ns":"leyue.userdatas"}
索引总结
1:创建索引时,1表示按升序存储,-1表示按降序存储。
2:可以创建复合索引,如果想用到复合索引,必须在查询条件中包含复合索引中的前N个索引列
3: 如果查询条件中的键值顺序和复合索引中的创建顺序不一致的话,
MongoDB可以智能的帮助我们调整该顺序,以便使复合索引可以为查询所用。
4: 可以为内嵌文档创建索引,其规则和普通文档创建索引是一样的。
5: 一次查询中只能使用一个索引,$or特殊,可以在每个分支条件上使用一个索引。
6: $where,$exists不能使用索引,还有一些低效率的操作符,比如:$ne,$not,$nin等。
7: 设计多个字段的索引时,应该尽量将用于精确匹配的字段放在索引的前面。
explain 使用
语法
db.collection.explain().<method(...)>
explain() 可以设置参数 :
queryPlanner。
executionStats。
allPlansExecution。
示例
for(vari=0;i<100000;i++){db.test.insert({"user":"user"+i});}
没有使用索引
db.test.explain("executionStats").find({"user":"user200000"}){"queryPlanner":{"plannerVersion":1,"namespace":"leyue.test","indexFilterSet":false,"parsedQuery":{"user":{"$eq":"user200000"}},"winningPlan":{"stage":"COLLSCAN","filter":{"user":{"$eq":"user200000"}},"direction":"forward"},"rejectedPlans":[]},"executionStats":{"executionSuccess":true,"nReturned":2,"executionTimeMillis":326,"totalKeysExamined":0,"totalDocsExamined":1006497,"executionStages":{"stage":"COLLSCAN","filter":{"user":{"$eq":"user200000"}},"nReturned":2,"executionTimeMillisEstimate":270,"works":1006499,"advanced":2,"needTime":1006496,"needYield":0,"saveState":7863,"restoreState":7863,"isEOF":1,"invalidates":0,"direction":"forward","docsExamined":1006497}},"serverInfo":{"host":"lihaodeMacBook-Pro.local","port":27017,"version":"3.2.1","gitVersion":"a14d55980c2cdc565d4704a7e3ad37e4e535c1b2"},"ok":1}
executionStats.executionTimeMillis: query
的整体查询时间。
executionStats.nReturned
: 查询返回的条目。
executionStats.totalKeysExamined
: 索引扫描条目。
executionStats.totalDocsExamined
: 文档扫描条目。
executionTimeMillis = 326
query 执行时间
nReturned=2
返回两条数据
totalKeysExamined=0
没有用到索引
totalDocsExamined 全文档扫描
理想状态:
nReturned=totalKeysExamined & totalDocsExamined=0
Stage状态分析
stage描述COLLSCAN全表扫描IXSCAN扫描索引FETCH根据索引去检索指定documentSHARD_MERGE将各个分片返回数据进行mergeSORT表明在内存中进行了排序LIMIT使用limit限制返回数SKIP使用skip进行跳过IDHACK针对_id进行查询SHARDING_FILTER通过mongos对分片数据进行查询COUNT利用db.coll.explain().count()之类进行count运算COUNTSCANcount不使用Index进行count时的stage返回COUNT_SCANcount使用了Index进行count时的stage返回SUBPLA未使用到索引的$or查询的stage返回TEXT使用全文索引进行查询时候的stage返回PROJECTION限定返回字段时候stage的返回对于普通查询,我希望看到stage的组合(查询的时候尽可能用上索引):
Fetch+IDHACK
Fetch+ixscan
Limit+(Fetch+ixscan)
PROJECTION+ixscan
SHARDING_FITER+ixscan
COUNT_SCAN
不希望看到包含如下的stage:
COLLSCAN(全表扫描),SORT(使用sort但是无index),不合理的SKIP,SUBPLA(未用到index的$or),COUNTSCAN(不使用index进行count)
使用索引
db.test.createIndex({"user":1},{"name":"myindex","background":true})db.test.explain("executionStats").find({"user":"user200000"}){"queryPlanner":{"plannerVersion":1,"namespace":"leyue.test","indexFilterSet":false,"parsedQuery":{"user":{"$eq":"user200000"}},"winningPlan":{"stage":"FETCH","inputStage":{"stage":"IXSCAN","keyPattern":{"user":1},"indexName":"myindex","isMultiKey":false,"isUnique":false,"isSparse":false,"isPartial":false,"indexVersion":1,"direction":"forward","indexBounds":{"user":["[\"user200000\",\"user200000\"]"]}}},"rejectedPlans":[]},"executionStats":{"executionSuccess":true,"nReturned":2,"executionTimeMillis":0,"totalKeysExamined":2,"totalDocsExamined":2,"executionStages":{"stage":"FETCH","nReturned":2,"executionTimeMillisEstimate":0,"works":3,"advanced":2,"needTime":0,"needYield":0,"saveState":0,"restoreState":0,"isEOF":1,"invalidates":0,"docsExamined":2,"alreadyHasObj":0,"inputStage":{"stage":"IXSCAN","nReturned":2,"executionTimeMillisEstimate":0,"works":3,"advanced":2,"needTime":0,"needYield":0,"saveState":0,"restoreState":0,"isEOF":1,"invalidates":0,"keyPattern":{"user":1},"indexName":"myindex","isMultiKey":false,"isUnique":false,"isSparse":false,"isPartial":false,"indexVersion":1,"direction":"forward","indexBounds":{"user":["[\"user200000\",\"user200000\"]"]},"keysExamined":2,"dupsTested":0,"dupsDropped":0,"seenInvalidated":0}}},"serverInfo":{"host":"lihaodeMacBook-Pro.local","port":27017,"version":"3.2.1","gitVersion":"a14d55980c2cdc565d4704a7e3ad37e4e535c1b2"},"ok":1}
executionTimeMillis: 0
totalKeysExamined: 2
totalDocsExamined:2
nReturned:2
stage:IXSCAN
使用索引和不使用差距很大,合理使用索引,一个集合适合做 4-5 个索引。
感谢你能够认真阅读完这篇文章,希望小编分享的“MongoDB数据库中索引和explain的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。