这篇文章给大家分享的是有关如何将MySQL去重的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

•问题提出

源表t_source结构如下:

item_idint,created_timedatetime,modified_timedatetime,item_namevarchar(20),othervarchar(20)

要求:

1.源表中有100万条数据,其中有50万created_time和item_name重复。
2.要把去重后的50万数据写入到目标表。
3.重复created_time和item_name的多条数据,可以保留任意一条,不做规则限制。

•实验环境

Linux虚机:CentOS release 6.4;8G物理内存(MySQL配置4G);100G机械硬盘;双物理CPU双核,共四个处理器;MySQL 8.0.16。

•建立测试表和数据

--建立源表createtablet_source(item_idint,created_timedatetime,modified_timedatetime,item_namevarchar(20),othervarchar(20));--建立目标表createtablet_targetliket_source;--生成100万测试数据,其中有50万created_time和item_name重复delimiter//createproceduresp_generate_data()beginset@i:=1;while@i<=500000doset@created_time:=date_add('2017-01-01',interval@isecond);set@modified_time:=@created_time;set@item_name:=concat('a',@i);insertintot_sourcevalues(@i,@created_time,@modified_time,@item_name,'other');set@i:=@i+1;endwhile;commit;set@last_insert_id:=500000;insertintot_sourceselectitem_id+@last_insert_id,created_time,date_add(modified_time,interval@last_insert_idsecond),item_name,'other'fromt_source;commit;end//delimiter;callsp_generate_data();--源表没有主键或唯一性约束,有可能存在两条完全一样的数据,所以再插入一条记录模拟这种情况。insertintot_sourceselect*fromt_sourcewhereitem_id=1;源表中有1000001条记录,去重后的目标表应该有500000条记录。mysql>selectcount(*),count(distinctcreated_time,item_name)fromt_source;+----------+----------------------------------------+|count(*)|count(distinctcreated_time,item_name)|+----------+----------------------------------------+|1000001|500000|+----------+----------------------------------------+1rowinset(1.92sec)一、巧用索引与变量1. 无索引对比测试

(1)使用相关子查询

truncatet_target;insertintot_targetselectdistinctt1.*fromt_sourcet1whereitem_idin(selectmin(item_id)fromt_sourcet2wheret1.created_time=t2.created_timeandt1.item_name=t2.item_name);

这个语句很长时间都出不来结果,只看一下执行计划吧。

mysql>explainselectdistinctt1.*fromt_sourcet1whereitem_idin->(selectmin(item_id)fromt_sourcet2wheret1.created_time=t2.created_timeandt1.item_name=t2.item_name);+----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+|id|select_type|table|partitions|type|possible_keys|key|key_len|ref|rows|filtered|Extra|+----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+|1|PRIMARY|t1|NULL|ALL|NULL|NULL|NULL|NULL|997282|100.00|Usingwhere;Usingtemporary||2|DEPENDENTSUBQUERY|t2|NULL|ALL|NULL|NULL|NULL|NULL|997282|1.00|Usingwhere|+----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+2rowsinset,3warnings(0.00sec)

主查询和相关子查询都是全表扫描,一共要扫描100万*100万数据行,难怪出不来结果。

(2)使用表连接

truncatet_target;insertintot_targetselectdistinctt1.*fromt_sourcet1,(selectmin(item_id)item_id,created_time,item_namefromt_sourcegroupbycreated_time,item_name)t2wheret1.item_id=t2.item_id;

这种方法用时14秒,查询计划如下:

mysql>explainselectdistinctt1.*fromt_sourcet1,(selectmin(item_id)item_id,created_time,item_namefromt_sourcegroupbycreated_time,item_name)t2wheret1.item_id=t2.item_id;+----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+|id|select_type|table|partitions|type|possible_keys|key|key_len|ref|rows|filtered|Extra|+----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+|1|PRIMARY|t1|NULL|ALL|NULL|NULL|NULL|NULL|997282|100.00|Usingwhere;Usingtemporary||1|PRIMARY|<derived2>|NULL|ref|<auto_key0>|<auto_key0>|5|test.t1.item_id|10|100.00|Distinct||2|DERIVED|t_source|NULL|ALL|NULL|NULL|NULL|NULL|997282|100.00|Usingtemporary|+----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+3rowsinset,1warning(0.00sec)

•内层查询扫描t_source表的100万行,建立临时表,找出去重后的最小item_id,生成导出表derived2,此导出表有50万行。
•MySQL会在导出表derived2上自动创建一个item_id字段的索引auto_key0。
•外层查询也要扫描t_source表的100万行数据,在与导出表做链接时,对t_source表每行的item_id,使用auto_key0索引查找导出表中匹配的行,并在此时优化distinct操作,在找到第一个匹配的行后即停止查找同样值的动作。

(3)使用变量

set@a:='1000-01-0100:00:00';set@b:='';set@f:=0;truncatet_target;insertintot_targetselectitem_id,created_time,modified_time,item_name,otherfrom(selectt0.*,if(@a=created_timeand@b=item_name,@f:=0,@f:=1)f,@a:=created_time,@b:=item_namefrom(select*fromt_sourceorderbycreated_time,item_name)t0)t1wheref=1;

这种方法用时13秒,查询计划如下:

mysql>explainselectitem_id,created_time,modified_time,item_name,other->from->(selectt0.*,if(@a=created_timeand@b=item_name,@f:=0,@f:=1)f,@a:=created_time,@b:=item_name->from->(select*fromt_sourceorderbycreated_time,item_name)t0)t1wheref=1;+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+|id|select_type|table|partitions|type|possible_keys|key|key_len|ref|rows|filtered|Extra|+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+|1|PRIMARY|<derived2>|NULL|ref|<auto_key0>|<auto_key0>|4|const|10|100.00|NULL||2|DERIVED|<derived3>|NULL|ALL|NULL|NULL|NULL|NULL|997282|100.00|NULL||3|DERIVED|t_source|NULL|ALL|NULL|NULL|NULL|NULL|997282|100.00|Usingfilesort|+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+3rowsinset,5warnings(0.00sec)

•最内层的查询扫描t_source表的100万行,并使用文件排序,生成导出表derived3。
•第二层查询要扫描derived3的100万行,生成导出表derived2,完成变量的比较和赋值,并自动创建一个导出列f上的索引auto_key0。
•最外层使用auto_key0索引扫描derived2得到去重的结果行。

与上面方法2比较,总的扫描行数不变,都是200万行。只存在一点微小的差别,这次自动生成的索引是在常量列 f 上,而表关联自动生成的索引是在item_id列上,所以查询时间几乎相同。

至此,我们还没有在源表上创建任何索引。无论使用哪种写法,要查重都需要对created_time和item_name字段进行排序,因此很自然地想到,如果在这两个字段上建立联合索引,利用索引本身有序的特性消除额外排序,从而提高查询性能。

2. 建立created_time和item_name上的联合索引对比测试

--建立created_time和item_name字段的联合索引createindexidx_sortont_source(created_time,item_name,item_id);analyzetablet_source;

(1)使用相关子查询

truncatet_target;insertintot_targetselectdistinctt1.*fromt_sourcet1whereitem_idin(selectmin(item_id)fromt_sourcet2wheret1.created_time=t2.created_timeandt1.item_name=t2.item_name);

本次用时19秒,查询计划如下:

mysql>explainselectdistinctt1.*fromt_sourcet1whereitem_idin->(selectmin(item_id)fromt_sourcet2wheret1.created_time=t2.created_timeandt1.item_name=t2.item_name);+----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+|id|select_type|table|partitions|type|possible_keys|key|key_len|ref|rows|filtered|Extra|+----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+|1|PRIMARY|t1|NULL|ALL|NULL|NULL|NULL|NULL|997281|100.00|Usingwhere;Usingtemporary||2|DEPENDENTSUBQUERY|t2|NULL|ref|idx_sort|idx_sort|89|test.t1.created_time,test.t1.item_name|2|100.00|Usingindex|+----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+2rowsinset,3warnings(0.00sec)

•外层查询的t_source表是驱动表,需要扫描100万行。

•对于驱动表每行的item_id,通过idx_sort索引查询出两行数据。

(2)使用表连接

truncatet_target;insertintot_targetselectdistinctt1.*fromt_sourcet1,(selectmin(item_id)item_id,created_time,item_namefromt_sourcegroupbycreated_time,item_name)t2wheret1.item_id=t2.item_id;

本次用时13秒,查询计划如下:

mysql>explainselectdistinctt1.*fromt_sourcet1,->(selectmin(item_id)item_id,created_time,item_namefromt_sourcegroupbycreated_time,item_name)t2->wheret1.item_id=t2.item_id;+----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+|id|select_type|table|partitions|type|possible_keys|key|key_len|ref|rows|filtered|Extra|+----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+|1|PRIMARY|t1|NULL|ALL|NULL|NULL|NULL|NULL|997281|100.00|Usingwhere;Usingtemporary||1|PRIMARY|<derived2>|NULL|ref|<auto_key0>|<auto_key0>|5|test.t1.item_id|10|100.00|Distinct||2|DERIVED|t_source|NULL|index|idx_sort|idx_sort|94|NULL|997281|100.00|Usingindex|+----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+3rowsinset,1warning(0.00sec)

和没有索引相比,子查询虽然从全表扫描变为了全索引扫描,但还是需要扫描100万行记录。因此查询性能提升并不是明显。

(3)使用变量

set@a:='1000-01-0100:00:00';set@b:='';set@f:=0;truncatet_target;insertintot_targetselectitem_id,created_time,modified_time,item_name,otherfrom(selectt0.*,if(@a=created_timeand@b=item_name,@f:=0,@f:=1)f,@a:=created_time,@b:=item_namefrom(select*fromt_sourceorderbycreated_time,item_name)t0)t1wheref=1;

本次用时13秒,查询计划与没有索引时的完全相同。可见索引对这种写法没有作用。能不能消除嵌套,只用一层查询出结果呢?

(4)使用变量,并且消除嵌套查询

set@a:='1000-01-0100:00:00';set@b:='';truncatet_target;insertintot_targetselect*fromt_sourceforceindex(idx_sort)where(@a!=created_timeor@b!=item_name)and(@a:=created_time)isnotnulland(@b:=item_name)isnotnullorderbycreated_time,item_name;

本次用时12秒,查询计划如下:

mysql>explainselect*fromt_sourceforceindex(idx_sort)->where(@a!=created_timeor@b!=item_name)and(@a:=created_time)isnotnulland(@b:=item_name)isnotnull->orderbycreated_time,item_name;+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+|id|select_type|table|partitions|type|possible_keys|key|key_len|ref|rows|filtered|Extra|+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+|1|SIMPLE|t_source|NULL|index|NULL|idx_sort|94|NULL|997281|99.00|Usingwhere|+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+1rowinset,3warnings(0.00sec)

该语句具有以下特点:

•消除了嵌套子查询,只需要对t_source表进行一次全索引扫描,查询计划已达最优。
•无需distinct二次查重。
•变量判断与赋值只出现在where子句中。
•利用索引消除了filesort。

在MySQL 8之前,该语句是单线程去重的最佳解决方案。仔细分析这条语句,发现它巧妙地利用了SQL语句的逻辑查询处理步骤和索引特性。一条SQL查询的逻辑步骤为:

1.执行笛卡尔乘积(交叉连接)
2.应用ON筛选器(连接条件)
3.添加外部行(outer join)
4.应用where筛选器
5.分组
6.应用cube或rollup
7.应用having筛选器
8.处理select列表
9.应用distinct子句
10.应用order by子句
11.应用limit子句

每条查询语句的逻辑执行步骤都是这11步的子集。拿这条查询语句来说,其执行顺序为:强制通过索引idx_sort查找数据行 -> 应用where筛选器 -> 处理select列表 -> 应用order by子句。

为了使变量能够按照created_time和item_name的排序顺序进行赋值和比较,必须按照索引顺序查找数据行。这里的force index (idx_sort)提示就起到了这个作用,必须这样写才能使整条查重语句成立。否则,因为先扫描表才处理排序,因此不能保证变量赋值的顺序,也就不能确保查询结果的正确性。order by子句同样不可忽略,否则即使有force index提示,MySQL也会使用全表扫描而不是全索引扫描,从而使结果错误。索引同时保证了created_time,item_name的顺序,避免了文件排序。force index (idx_sort)提示和order by子句缺一不可,索引idx_sort在这里可谓恰到好处、一举两得。

查询语句开始前,先给变量初始化为数据中不可能出现的值,然后进入where子句从左向右判断。先比较变量和字段的值,再将本行created_time和item_name的值赋给变量,按created_time、item_name的顺序逐行处理。item_name是字符串类型,(@b:=item_name)不是有效的布尔表达式,因此要写成(@b:=item_name) is not null。

最后补充一句,这里忽略了“insert into t_target select * from t_source group by created_time,item_name;”的写法,因为它受“sql_mode='ONLY_FULL_GROUP_BY'”的限制。

二、利用窗口函数

MySQL 8中新增的窗口函数使得原来麻烦的去重操作变得很简单。

truncatet_target;insertintot_targetselectitem_id,created_time,modified_time,item_name,otherfrom(select*,row_number()over(partitionbycreated_time,item_name)asrnfromt_source)twherern=1;

这个语句执行只需要12秒,而且写法清晰易懂,其查询计划如下:

mysql>explainselectitem_id,created_time,modified_time,item_name,other->from(select*,row_number()over(partitionbycreated_time,item_name)asrn->fromt_source)twherern=1;+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+|id|select_type|table|partitions|type|possible_keys|key|key_len|ref|rows|filtered|Extra|+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+|1|PRIMARY|<derived2>|NULL|ref|<auto_key0>|<auto_key0>|8|const|10|100.00|NULL||2|DERIVED|t_source|NULL|ALL|NULL|NULL|NULL|NULL|997281|100.00|Usingfilesort|+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+2rowsinset,2warnings(0.00sec)

该查询对t_source表进行了一次全表扫描,同时用filesort对表按分区字段created_time、item_name进行了排序。外层查询从每个分区中保留一条数据。因为重复created_timeitem_name的多条数据中可以保留任意一条,所以oevr中不需要使用order by子句。

从执行计划看,窗口函数去重语句似乎没有消除嵌套查询的变量去重好,但此方法实际执行是最快的。

MySQL窗口函数说明参见“https://dev.mysql.com/doc/refman/8.0/en/window-functions.html”。

三、多线程并行执行

前面已经将单条查重语句调整到最优,但还是以单线程方式执行。能否利用多处理器,让去重操作多线程并行执行,从而进一步提高速度呢?比如我的实验环境是4处理器,如果使用4个线程同时执行查重SQL,理论上应该接近4倍的性能提升。

1. 数据分片

在生成测试数据时,created_time采用每条记录加一秒的方式,也就是最大和在最小的时间差为50万秒,而且数据均匀分布,因此先把数据平均分成4份。

(1)查询出4份数据的created_time边界值

mysql>selectdate_add('2017-01-01',interval125000second)dt1,->date_add('2017-01-01',interval2*125000second)dt2,->date_add('2017-01-01',interval3*125000second)dt3,->max(created_time)dt4->fromt_source;+---------------------+---------------------+---------------------+---------------------+|dt1|dt2|dt3|dt4|+---------------------+---------------------+---------------------+---------------------+|2017-01-0210:43:20|2017-01-0321:26:40|2017-01-0508:10:00|2017-01-0618:53:20|+---------------------+---------------------+---------------------+---------------------+1rowinset(0.00sec)

(2)查看每份数据的记录数,确认数据平均分布

mysql>selectcasewhencreated_time>='2017-01-01'->andcreated_time<'2017-01-0210:43:20'->then'2017-01-01'->whencreated_time>='2017-01-0210:43:20'->andcreated_time<'2017-01-0321:26:40'->then'2017-01-0210:43:20'->whencreated_time>='2017-01-0321:26:40'->andcreated_time<'2017-01-0508:10:00'->then'2017-01-0321:26:40'->else'2017-01-0508:10:00'->endmin_dt,->casewhencreated_time>='2017-01-01'->andcreated_time<'2017-01-0210:43:20'->then'2017-01-0210:43:20'->whencreated_time>='2017-01-0210:43:20'->andcreated_time<'2017-01-0321:26:40'->then'2017-01-0321:26:40'->whencreated_time>='2017-01-0321:26:40'->andcreated_time<'2017-01-0508:10:00'->then'2017-01-0508:10:00'->else'2017-01-0618:53:20'->endmax_dt,->count(*)->fromt_source->groupbycasewhencreated_time>='2017-01-01'->andcreated_time<'2017-01-0210:43:20'->then'2017-01-01'->whencreated_time>='2017-01-0210:43:20'->andcreated_time<'2017-01-0321:26:40'->then'2017-01-0210:43:20'->whencreated_time>='2017-01-0321:26:40'->andcreated_time<'2017-01-0508:10:00'->then'2017-01-0321:26:40'->else'2017-01-0508:10:00'->end,->casewhencreated_time>='2017-01-01'->andcreated_time<'2017-01-0210:43:20'->then'2017-01-0210:43:20'->whencreated_time>='2017-01-0210:43:20'->andcreated_time<'2017-01-0321:26:40'->then'2017-01-0321:26:40'->whencreated_time>='2017-01-0321:26:40'->andcreated_time<'2017-01-0508:10:00'->then'2017-01-0508:10:00'->else'2017-01-0618:53:20'->end;+---------------------+---------------------+----------+|min_dt|max_dt|count(*)|+---------------------+---------------------+----------+|2017-01-01|2017-01-0210:43:20|249999||2017-01-0210:43:20|2017-01-0321:26:40|250000||2017-01-0321:26:40|2017-01-0508:10:00|250000||2017-01-0508:10:00|2017-01-0618:53:20|250002|+---------------------+---------------------+----------+4rowsinset(4.86sec)

4份数据的并集应该覆盖整个源数据集,并且数据之间是不重复的。也就是说4份数据的created_time要连续且互斥,连续保证处理全部数据,互斥确保了不需要二次查重。实际上这和时间范围分区的概念类似,或许用分区表更好些,只是这里省略了重建表的步骤。

2. 建立查重的存储过程

有了以上信息我们就可以写出4条语句处理全部数据。为了调用接口尽量简单,建立下面的存储过程。

delimiter//createproceduresp_unique(ismallint)beginset@a:='1000-01-0100:00:00';set@b:='';if(i<4)theninsertintot_targetselect*fromt_sourceforceindex(idx_sort)wherecreated_time>=date_add('2017-01-01',interval(i-1)*125000second)andcreated_time<date_add('2017-01-01',intervali*125000second)and(@a!=created_timeor@b!=item_name)and(@a:=created_time)isnotnulland(@b:=item_name)isnotnullorderbycreated_time,item_name;elseinsertintot_targetselect*fromt_sourceforceindex(idx_sort)wherecreated_time>=date_add('2017-01-01',interval(i-1)*125000second)andcreated_time<=date_add('2017-01-01',intervali*125000second)and(@a!=created_timeor@b!=item_name)and(@a:=created_time)isnotnulland(@b:=item_name)isnotnullorderbycreated_time,item_name;endif;end//

查询语句的执行计划如下:

mysql>explainselect*fromt_sourceforceindex(idx_sort)->wherecreated_time>=date_add('2017-01-01',interval(1-1)*125000second)->andcreated_time<date_add('2017-01-01',interval1*125000second)->and(@a!=created_timeor@b!=item_name)->and(@a:=created_time)isnotnull->and(@b:=item_name)isnotnull->orderbycreated_time,item_name;+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+|id|select_type|table|partitions|type|possible_keys|key|key_len|ref|rows|filtered|Extra|+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+|1|SIMPLE|t_source|NULL|range|idx_sort|idx_sort|6|NULL|498640|100.00|Usingindexcondition|+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+1rowinset,3warnings(0.00sec)

MySQL优化器进行索引范围扫描,并且使用索引条件下推(ICP)优化查询。

3. 并行执行

下面分别使用shell后台进程和MySQL Schedule Event实现并行。

(1)shell后台进程

•建立duplicate_removal.sh文件,内容如下:

#!/bin/bashmysql-vvv-uroot-p123456test-e"truncatet_target"&>/dev/nulldate'+%H:%M:%S'foryin{1..4}dosql="callsp_unique($y)"mysql-vvv-uroot-p123456test-e"$sql"&>par_sql1_$y.log&donewaitdate'+%H:%M:%S'

•执行脚本文件

./duplicate_removal.sh

执行输出如下:

[mysql@hdp2~]$./duplicate_removal.sh14:27:3014:27:35

这种方法用时5秒,并行执行的4个过程调用分别用时为4.87秒、4.88秒、4.91秒、4.73秒:

[mysql@hdp2~]$catpar_sql1_1.log|sed'/^$/d'mysql:[Warning]Usingapasswordonthecommandlineinterfacecanbeinsecure.--------------callsp_unique(1)--------------QueryOK,124999rowsaffected(4.87sec)Bye[mysql@hdp2~]$catpar_sql1_2.log|sed'/^$/d'mysql:[Warning]Usingapasswordonthecommandlineinterfacecanbeinsecure.--------------callsp_unique(2)--------------QueryOK,125000rowsaffected(4.88sec)Bye[mysql@hdp2~]$catpar_sql1_3.log|sed'/^$/d'mysql:[Warning]Usingapasswordonthecommandlineinterfacecanbeinsecure.--------------callsp_unique(3)--------------QueryOK,125000rowsaffected(4.91sec)Bye[mysql@hdp2~]$catpar_sql1_4.log|sed'/^$/d'mysql:[Warning]Usingapasswordonthecommandlineinterfacecanbeinsecure.--------------callsp_unique(4)--------------QueryOK,125001rowsaffected(4.73sec)Bye[mysql@hdp2~]$

可以看到,每个过程的执行时间均4.85,因为是并行执行,总的过程执行时间为最慢的4.91秒,比单线程速度提高了2.5倍。

(2)MySQL Schedule Event

•建立事件历史日志表

--用于查看事件执行时间等信息createtablet_event_history(dbnamevarchar(128)notnulldefault'',eventnamevarchar(128)notnulldefault'',starttimedatetime(3)notnulldefault'1000-01-0100:00:00',endtimedatetime(3)defaultnull,issuccessint(11)defaultnull,durationint(11)defaultnull,errormessagevarchar(512)defaultnull,randnoint(11)defaultnull);

•为每个并发线程创建一个事件

delimiter//createeventev1onscheduleatcurrent_timestamp+interval1houroncompletionpreservedisabledobegindeclarer_codechar(5)default'00000';declarer_msgtext;declarev_errorinteger;declarev_starttimedatetimedefaultnow(3);declarev_randnointegerdefaultfloor(rand()*100001);insertintot_event_history(dbname,eventname,starttime,randno)#作业名values(database(),'ev1',v_starttime,v_randno);begin#异常处理段declarecontinuehandlerforsqlexceptionbeginsetv_error=1;getdiagnosticscondition1r_code=returned_sqlstate,r_msg=message_text;end;#此处为实际调用的用户程序过程callsp_unique(1);end;updatet_event_historysetendtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)),errormessage=concat('error=',r_code,',message=',r_msg),randno=nullwherestarttime=v_starttimeandrandno=v_randno;end//createeventev2onscheduleatcurrent_timestamp+interval1houroncompletionpreservedisabledobegindeclarer_codechar(5)default'00000';declarer_msgtext;declarev_errorinteger;declarev_starttimedatetimedefaultnow(3);declarev_randnointegerdefaultfloor(rand()*100001);insertintot_event_history(dbname,eventname,starttime,randno)#作业名values(database(),'ev2',v_starttime,v_randno);begin#异常处理段declarecontinuehandlerforsqlexceptionbeginsetv_error=1;getdiagnosticscondition1r_code=returned_sqlstate,r_msg=message_text;end;#此处为实际调用的用户程序过程callsp_unique(2);end;updatet_event_historysetendtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)),errormessage=concat('error=',r_code,',message=',r_msg),randno=nullwherestarttime=v_starttimeandrandno=v_randno;end//createeventev3onscheduleatcurrent_timestamp+interval1houroncompletionpreservedisabledobegindeclarer_codechar(5)default'00000';declarer_msgtext;declarev_errorinteger;declarev_starttimedatetimedefaultnow(3);declarev_randnointegerdefaultfloor(rand()*100001);insertintot_event_history(dbname,eventname,starttime,randno)#作业名values(database(),'ev3',v_starttime,v_randno);begin#异常处理段declarecontinuehandlerforsqlexceptionbeginsetv_error=1;getdiagnosticscondition1r_code=returned_sqlstate,r_msg=message_text;end;#此处为实际调用的用户程序过程callsp_unique(3);end;updatet_event_historysetendtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)),errormessage=concat('error=',r_code,',message=',r_msg),randno=nullwherestarttime=v_starttimeandrandno=v_randno;end//createeventev4onscheduleatcurrent_timestamp+interval1houroncompletionpreservedisabledobegindeclarer_codechar(5)default'00000';declarer_msgtext;declarev_errorinteger;declarev_starttimedatetimedefaultnow(3);declarev_randnointegerdefaultfloor(rand()*100001);insertintot_event_history(dbname,eventname,starttime,randno)#作业名values(database(),'ev4',v_starttime,v_randno);begin#异常处理段declarecontinuehandlerforsqlexceptionbeginsetv_error=1;getdiagnosticscondition1r_code=returned_sqlstate,r_msg=message_text;end;#此处为实际调用的用户程序过程callsp_unique(4);end;updatet_event_historysetendtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)),errormessage=concat('error=',r_code,',message=',r_msg),randno=nullwherestarttime=v_starttimeandrandno=v_randno;end//

为了记录每个事件执行的时间,在事件定义中增加了操作日志表的逻辑,因为每个事件中只多执行了一条insert,一条update,4个事件总共多执行8条很简单的语句,对测试的影响可以忽略不计。执行时间精确到毫秒。

•触发事件执行

mysql-vvv-uroot-p123456test-e"truncatet_target;altereventev1onscheduleatcurrent_timestampenable;altereventev2onscheduleatcurrent_timestampenable;altereventev3onscheduleatcurrent_timestampenable;altereventev4onscheduleatcurrent_timestampenable;"

该命令行顺序触发了4个事件,但不会等前一个执行完才执行下一个,而是立即向下执行。这可从命令的输出可以清除看到:

[mysql@hdp2~]$mysql-vvv-uroot-p123456test-e"truncatet_target;altereventev1onscheduleatcurrent_timestampenable;altereventev2onscheduleatcurrent_timestampenable;altereventev3onscheduleatcurrent_timestampenable;altereventev4onscheduleatcurrent_timestampenable;"mysql:[Warning]Usingapasswordonthecommandlineinterfacecanbeinsecure.--------------truncatet_target--------------QueryOK,0rowsaffected(0.06sec)--------------altereventev1onscheduleatcurrent_timestampenable--------------QueryOK,0rowsaffected(0.02sec)--------------altereventev2onscheduleatcurrent_timestampenable--------------QueryOK,0rowsaffected(0.00sec)--------------altereventev3onscheduleatcurrent_timestampenable--------------QueryOK,0rowsaffected(0.02sec)--------------altereventev4onscheduleatcurrent_timestampenable--------------QueryOK,0rowsaffected(0.00sec)Bye[mysql@hdp2~]$

•查看事件执行日志

mysql>select*fromtest.t_event_history;+--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+|dbname|eventname|starttime|endtime|issuccess|duration|errormessage|randno|+--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+|test|ev1|2019-07-3114:38:04.000|2019-07-3114:38:09.389|1|5389000|NULL|NULL||test|ev2|2019-07-3114:38:04.000|2019-07-3114:38:09.344|1|5344000|NULL|NULL||test|ev3|2019-07-3114:38:05.000|2019-07-3114:38:09.230|1|4230000|NULL|NULL||test|ev4|2019-07-3114:38:05.000|2019-07-3114:38:09.344|1|4344000|NULL|NULL|+--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+4rowsinset(0.00sec)

可以看到,每个过程的执行均为4.83秒,又因为是并行执行的,因此总的执行之间为最慢的5.3秒,优化效果和shell后台进程方式几乎相同。

感谢各位的阅读!关于“如何将MySQL去重”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!