pytorch torch.expand和torch.repeat的区别详解
1.torch.expand
函数返回张量在某一个维度扩展之后的张量,就是将张量广播到新形状。函数对返回的张量不会分配新内存,即在原始张量上返回只读视图,返回的张量内存是不连续的。类似于numpy中的broadcast_to函数的作用。如果希望张量内存连续,可以调用contiguous函数。
例子:
import torchx = torch.tensor([1, 2, 3, 4])xnew = x.expand(2, 4)print(xnew)
输出:
tensor([[1, 2, 3, 4],
[1, 2, 3, 4]])
2.torch.repeat
torch.repeat用法类似np.tile,就是将原矩阵横向、纵向地复制。与torch.expand不同的是torch.repeat返回的张量在内存中是连续的。
例子1:
将张量横向的复制
import torchx = torch.tensor([1, 2, 3])xnew = x.repeat(1,3)print(xnew)
输出:
tensor([[1, 2, 3, 1, 2, 3, 1, 2, 3]])
例子2:
将张量纵向的复制
import torchx = torch.tensor([1, 2, 3])xnew = x.repeat(3,1)print(xnew)
输出:
tensor([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持亿速云。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。