背景

当使用多个线程操作任务的时候,如果线程间有需要通信的地方,那么不可避免的要实现到线程间的通信,来互相通知消息,同步任务的执行。

一.通信

1.线程threading共享内存地址,进程与进程Peocess之间相互独立,互不影响(相当于深拷贝);

2.在线程间通信的时候可以使用Queue模块完成,进程间通信也可以通过Queue完成,但是此Queue并非线程的Queue,进程间通信Queue是将数据 pickle 后传给另一个进程的 Queue,用于父进程与子进程之间的通信或同一父进程的子进程之间通信;

queue

python中的queue模块其实是对数据结构中栈和队列这种数据结构的封装,把抽象的数据结构封装成类的属性和方法

使用Queue线程间通信:


1

2

3

4

5

#导入线程相关模块

import threading

import queue

q = queue.Queue()

使用Queue进程间通信,适用于多个进程之间通信:


1

2

3

4

5

# 导入进程相关模块

from multiprocessing import Process

from multiprocessing import Queue

q = Queue()

使用Pipe进程间通信,适用于两个进程之间通信(一对一):


1

2

3

4

5

# 导入进程相关模块

from multiprocessing import Process

from multiprocessing import Pipe

pipe = Pipe()

二.python进程间通信Queue/Pipe使用

python提供了多种进程通信的方式,主要Queue和Pipe这两种方式,Queue用于多个进程间实现通信,Pipe用于两个进程的通信;

1.使用Queue进程间通信,Queue包含两个方法:

put():以插入数据到队列中,他还有两个可选参数:blocked和timeout。详情自行百度

get():从队列读取并且删除一个元素。同样,他还有两个可选参数:blocked和timeout。详情自行百度


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

# !usr/bin/env python

# -*- coding:utf-8 _*-

"""

@Author:何以解忧

@Blog(个人博客地址): shuopython.com

@WeChat Official Account(微信公众号):猿说python

@Github:www.github.com

@File:python_process_queue.py

@Time:2019/12/21 21:25

@Motto:不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!

"""

from multiprocessing import Process

from multiprocessing import Queue

import os,time,random

#写数据进程执行的代码

def proc_write(q,urls):

print ('Process is write....')

for url in urls:

q.put(url)

print ('put %s to queue... ' %url)

time.sleep(random.random())

#读数据进程的代码

def proc_read(q):

print('Process is reading...')

while True:

url = q.get(True)

print('Get %s from queue' %url)

if __name__ == '__main__':

#父进程创建Queue,并传给各个子进程

q = Queue()

proc_write1 = Process(target=proc_write,args=(q,['url_1','url_2','url_3']))

proc_write2 = Process(target=proc_write,args=(q,['url_4','url_5','url_6']))

proc_reader = Process(target=proc_read,args=(q,))

#启动子进程,写入

proc_write1.start()

proc_write2.start()

proc_reader.start()

#等待proc_write1结束

proc_write1.join()

proc_write2.join()

#proc_raader进程是死循环,强制结束

proc_reader.terminate()

print("mian")

输出结果:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Process is write....

put url_1 to queue...

Process is write....

put url_4 to queue...

Process is reading...

Get url_1 from queue

Get url_4 from queue

put url_5 to queue...

Get url_5 from queue

put url_2 to queue...

Get url_2 from queue

put url_3 to queue...

Get url_3 from queue

put url_6 to queue...

Get url_6 from queue

mian

2.使用Pipe进程间通信

Pipe常用于两个进程,两个进程分别位于管道的两端 * Pipe方法返回(conn1,conn2)代表一个管道的两个端,Pipe方法有duplex参数,默认为True,即全双工模式,若为FALSE,conn1只负责接收信息,conn2负责发送,Pipe同样也包含两个方法:

send() : 发送信息;

recv() : 接收信息;


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

from multiprocessing import Process

from multiprocessing import Pipe

import os,time,random

#写数据进程执行的代码

def proc_send(pipe,urls):

#print 'Process is write....'

for url in urls:

print ('Process is send :%s' %url)

pipe.send(url)

time.sleep(random.random())

#读数据进程的代码

def proc_recv(pipe):

while True:

print('Process rev:%s' %pipe.recv())

time.sleep(random.random())

if __name__ == '__main__':

#父进程创建pipe,并传给各个子进程

pipe = Pipe()

p1 = Process(target=proc_send,args=(pipe[0],['url_'+str(i) for i in range(10) ]))

p2 = Process(target=proc_recv,args=(pipe[1],))

#启动子进程,写入

p1.start()

p2.start()

p1.join()

p2.terminate()

print("mian")

输出结果:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Process is send :url_0

Process rev:url_0

Process is send :url_1

Process rev:url_1

Process is send :url_2

Process rev:url_2

Process is send :url_3

Process rev:url_3

Process is send :url_4

Process rev:url_4

Process is send :url_5

Process is send :url_6

Process is send :url_7

Process rev:url_5

Process is send :url_8

Process is send :url_9

Process rev:url_6

mian

三.测试queue.Queue来完成进程间通信能否成功?

当然我们也可以尝试使用线程threading的Queue是否能完成线程间通信,示例代码如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

from multiprocessing import Process

# from multiprocessing import Queue # 进程间通信Queue,两者不要混淆

import queue# 线程间通信queue.Queue,两者不要混淆

import time

def p_put(q,*args):

q.put(args)

print('Has put %s' % args)

def p_get(q,*args):

print('%s wait to get...' % args)

print(q.get())

print('%s got it' % args)

if __name__ == "__main__":

q = queue.Queue()

p1 = Process(target=p_put, args=(q,'p1', ))

p2 = Process(target=p_get, args=(q,'p2', ))

p1.start()

p2.start()

直接异常报错:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Traceback (most recent call last):

File "E:/Project/python_project/untitled10/123.py", line 38, in <module>

p1.start()

File "G:\ProgramData\Anaconda3\lib\multiprocessing\process.py", line 105, in start

self._popen = self._Popen(self)

File "G:\ProgramData\Anaconda3\lib\multiprocessing\context.py", line 223, in _Popen

return _default_context.get_context().Process._Popen(process_obj)

File "G:\ProgramData\Anaconda3\lib\multiprocessing\context.py", line 322, in _Popen

return Popen(process_obj)

File "G:\ProgramData\Anaconda3\lib\multiprocessing\popen_spawn_win32.py", line 65, in __init__

reduction.dump(process_obj, to_child)

File "G:\ProgramData\Anaconda3\lib\multiprocessing\reduction.py", line 60, in dump

ForkingPickler(file, protocol).dump(obj)

TypeError: can't pickle _thread.lock objects