Python3快速入门(十五)——Pandas数据处理一、函数应用1、函数应用简介

如果要将自定义函数或其它库函数应用于Pandas对象,有三种使用方式。pipe()将函数用于表格,apply()将函数用于行或列,applymap()将函数用于元素。

2、表格函数应用

可以通过将函数对象和参数作为pipe函数的参数来执行自定义操作,会对整个DataFrame执行操作。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npdef adder(x, y): return x + yif __name__ == "__main__": df = pd.DataFrame(np.random.randn(5, 3),columns=['col1', 'col2', 'col3']) print(df) df = df.pipe(adder, 1) print(df)# output:# col1 col2 col3# 0 0.390803 0.940306 -1.300635# 1 -0.349588 -1.290132 0.415693# 2 -0.079585 -0.083825 0.262867# 3 0.582377 0.171701 -1.011748# 4 -0.466655 1.746269 1.281538# col1 col2 col3# 0 1.390803 1.940306 -0.300635# 1 0.650412 -0.290132 1.415693# 2 0.920415 0.916175 1.262867# 3 1.582377 1.171701 -0.011748# 4 0.533345 2.746269 2.2815383、行、列函数应用

使用apply()函数可以沿DataFrame或Panel的轴执行应用函数,采用可选axis参数。 默认情况下,操作按列执行。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npdef adder(x, y): return x + yif __name__ == "__main__": df = pd.DataFrame(np.random.randn(5, 3), columns=['col1', 'col2', 'col3']) print(df) # 按列执行 result = df.apply(np.sum) print(result) # 按行执行 result = df.apply(np.sum, axis=1) print(result)# output:# col1 col2 col3# 0 -1.773775 -0.608478 0.602059# 1 -0.208412 0.969435 -0.292108# 2 0.776864 -0.768559 -0.389092# 3 -2.088412 1.133090 1.006486# 4 0.693241 1.808845 0.772191# col1 -2.600494# col2 2.534332# col3 1.699536# dtype: float64# 0 -1.780194# 1 0.468915# 2 -0.380788# 3 0.051164# 4 3.274277# dtype: float644、元素函数应用

在DataFrame的applymap()函数可以接受任何Python函数,并且返回单个值。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(5, 3), columns=['col1', 'col2', 'col3']) print(df) df = df.applymap(lambda x: x + 1) print(df)# output:# col1 col2 col3# 0 2.396185 -0.263581 -0.090799# 1 1.718716 0.876074 -1.067746# 2 -1.033945 -0.078448 1.036566# 3 0.553849 0.251312 -0.422640# 4 -0.896062 1.605349 -0.089430# col1 col2 col3# 0 3.396185 0.736419 0.909201# 1 2.718716 1.876074 -0.067746# 2 -0.033945 0.921552 2.036566# 3 1.553849 1.251312 0.577360# 4 0.103938 2.605349 0.910570二、数据清洗1、数据清洗简介

数据清洗是一项复杂且繁琐的工作,同时也是数据分析过程中最为重要的环节。数据清洗的目的一是通过清洗让数据可用,二是让数据变的更适合进行数据分析工作。因此,脏数据要清洗,干净数据也要清洗。在实际数据分析中,数据清洗将占用项目70%左右的时间。

2、缺失值处理

查看每一列有多少缺失值。
df.isnull().sum()
查看每一列有多少完整的数据
df.shape[0]-df.isnull().sum()

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC')) print(df) print(df.isnull().sum()) print(df.shape[0] - df.isnull().sum())# output:# A B C# 2019-01-01 1.138325 0.981597 1.359580# 2019-01-02 -1.622074 0.812393 -0.946351# 2019-01-03 0.049815 1.194241 0.807209# 2019-01-04 1.500074 -0.570367 -0.328529# 2019-01-05 0.465869 1.049651 -0.112453# 2019-01-06 -1.399495 0.492769 1.961198# A 0# B 0# C 0# dtype: int64# A 6# B 6# C 6# dtype: int64

删除列

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df) del df['D'] # 删除第2列 df.drop(df.columns[2], axis=1, inplace=True) # 删除B列 df.drop('B', axis=1, inplace=True) print(df)# output:# A B C# 2019-01-01 -0.703151 0.753482 -0.624376# 2019-01-02 -0.396221 -0.832279 -1.419897# 2019-01-03 -0.179341 -0.368501 -0.300810# 2019-01-04 0.464156 0.117461 1.502114# 2019-01-05 -1.022012 -1.612456 1.611377# 2019-01-06 -0.677521 0.001020 -0.342290# A# 2019-01-01 -0.703151# 2019-01-02 -0.396221# 2019-01-03 -0.179341# 2019-01-04 0.464156# 2019-01-05 -1.022012# 2019-01-06 -0.677521

删除NaN值

df.dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False)

axis为轴,0表示对行进行操作,1表示对列进行操作。
how为操作类型,’any’表示只要出现NaN的行或列都删除,’all’表示删除整行或整列都为NaN的行或列。
thresh:NaN的阈值,达到thresh时删除。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) df.iloc[1, 3] = None df.iloc[2, 2] = None print(df) print(df.dropna(axis=1)) print(df.dropna(how='any'))# output:# A B C D# 2019-01-01 -0.152239 -2.315100 -0.504998 -0.987549# 2019-01-02 -1.884801 1.046506 -1.618871 NaN# 2019-01-03 0.976682 -1.043107 NaN 0.391338# 2019-01-04 0.143389 0.951518 0.040632 -0.443944# 2019-01-05 3.092766 0.787921 -2.408260 -1.111238# 2019-01-06 -0.179249 0.573734 -0.912023 0.261517# A B# 2019-01-01 -0.152239 -2.315100# 2019-01-02 -1.884801 1.046506# 2019-01-03 0.976682 -1.043107# 2019-01-04 0.143389 0.951518# 2019-01-05 3.092766 0.787921# 2019-01-06 -0.179249 0.573734# A B C D# 2019-01-01 -0.152239 -2.315100 -0.504998 -0.987549# 2019-01-04 0.143389 0.951518 0.040632 -0.443944# 2019-01-05 3.092766 0.787921 -2.408260 -1.111238# 2019-01-06 -0.179249 0.573734 -0.912023 0.261517

填充NaN值

df.fillna(self, value=None, method=None, axis=None, inplace=False,limit=None, downcast=None, **kwargs)

value:填充的值,可以为字典,字典的key为列名称。
inplace:表示是否对源数据进行修改,默认为False。
fillna默认会返回新对象,但也可以对现有对象进行就地修改。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) df.iloc[1, 3] = None df.iloc[2, 2] = None print(df) print(df.fillna({'C': 3.14, 'D': 0.0})) # 使用指定值填充 df.fillna(value=3.14, inplace=True) print(df)# output:# A B C D# 2019-01-01 0.490727 -0.603079 0.202922 2.012060# 2019-01-02 -0.855106 0.305557 0.851141 NaN# 2019-01-03 -0.324215 0.629637 NaN -0.174930# 2019-01-04 0.085996 0.173265 0.416938 -0.903989# 2019-01-05 0.009368 0.410056 -1.297822 -2.202893# 2019-01-06 0.021892 -0.359749 -0.608556 -0.859454# A B C D# 2019-01-01 0.490727 -0.603079 0.202922 2.012060# 2019-01-02 -0.855106 0.305557 0.851141 0.000000# 2019-01-03 -0.324215 0.629637 3.140000 -0.174930# 2019-01-04 0.085996 0.173265 0.416938 -0.903989# 2019-01-05 0.009368 0.410056 -1.297822 -2.202893# 2019-01-06 0.021892 -0.359749 -0.608556 -0.859454# A B C D# 2019-01-01 0.490727 -0.603079 0.202922 2.012060# 2019-01-02 -0.855106 0.305557 0.851141 3.140000# 2019-01-03 -0.324215 0.629637 3.140000 -0.174930# 2019-01-04 0.085996 0.173265 0.416938 -0.903989# 2019-01-05 0.009368 0.410056 -1.297822 -2.202893# 2019-01-06 0.021892 -0.359749 -0.608556 -0.859454

对数据进行布尔填充

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) df.iloc[1, 3] = None df.iloc[2, 2] = None print(df) print(pd.isnull(df))# output:# A B C D# 2019-01-01 -1.337471 0.154446 0.493862 1.278946# 2019-01-02 2.853301 -0.151376 0.318281 NaN# 2019-01-03 1.094465 0.059063 NaN 0.216805# 2019-01-04 -0.983091 -1.052905 0.416604 -1.431156# 2019-01-05 -1.421142 1.015465 -1.851315 -0.680514# 2019-01-06 0.224378 -0.636699 -0.749040 -0.728368# A B C D# 2019-01-01 False False False False# 2019-01-02 False False False True# 2019-01-03 False False True False# 2019-01-04 False False False False# 2019-01-05 False False False False# 2019-01-06 False False False False3、行和列处理

通过字典键可以进行列选择,获取DataFrame中的一列数据。
生成DataFrame时指定index和columns

import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df)# output:# A B C D# 2013-01-01 1.116914 -0.221035 -0.577299 -0.328831# 2013-01-02 1.764656 1.462838 -0.360678 1.176134# 2013-01-03 0.144396 -0.594359 -0.548543 1.281829# 2013-01-04 0.632378 0.895123 -0.757924 -1.325917# 2013-01-05 0.219125 -1.247446 0.335363 -0.676052# 2013-01-06 0.963715 -0.131331 0.326482 -0.718461

index和columns也可以在DataFrame创建后指定

import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df) df.index = pd.date_range('20130201', periods=df.shape[0]) df.columns = list('abcd') print(df) df.index = pd.date_range('20130301', periods=len(df)) df.columns = list('ABCD') print(df)# output:# A B C D# 2013-01-01 1.588442 1.548420 0.132539 0.410512# 2013-01-02 0.200415 1.515354 2.275575 -1.533603# 2013-01-03 0.838294 0.067409 -1.157181 0.401973# 2013-01-04 0.551363 -0.749296 0.343762 -1.558969# 2013-01-05 -0.799507 -1.343379 -0.006312 1.091014# 2013-01-06 0.012188 -0.382384 0.280008 -2.333430# a b c d# 2013-02-01 1.588442 1.548420 0.132539 0.410512# 2013-02-02 0.200415 1.515354 2.275575 -1.533603# 2013-02-03 0.838294 0.067409 -1.157181 0.401973# 2013-02-04 0.551363 -0.749296 0.343762 -1.558969# 2013-02-05 -0.799507 -1.343379 -0.006312 1.091014# 2013-02-06 0.012188 -0.382384 0.280008 -2.333430# A B C D# 2013-03-01 1.588442 1.548420 0.132539 0.410512# 2013-03-02 0.200415 1.515354 2.275575 -1.533603# 2013-03-03 0.838294 0.067409 -1.157181 0.401973# 2013-03-04 0.551363 -0.749296 0.343762 -1.558969# 2013-03-05 -0.799507 -1.343379 -0.006312 1.091014# 2013-03-06 0.012188 -0.382384 0.280008 -2.333430

可以指定某一列为index

import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), columns=list('ABCD')) df['date'] = dates print(df) df = df.set_index('date', drop=True) print(df)# output:# A B C D date# 0 0.910416 -0.378195 0.332562 -0.194766 2013-01-01# 1 0.533733 0.888629 -0.358143 1.583278 2013-01-02# 2 0.482362 -0.905558 1.045753 -0.874653 2013-01-03# 3 0.901622 -0.535862 -0.439763 -0.640594 2013-01-04# 4 -1.273577 -0.746785 1.448309 -0.368285 2013-01-05# 5 0.191289 -1.246213 0.184757 -1.143074 2013-01-06# A B C D# date# 2013-01-01 0.910416 -0.378195 0.332562 -0.194766# 2013-01-02 0.533733 0.888629 -0.358143 1.583278# 2013-01-03 0.482362 -0.905558 1.045753 -0.874653# 2013-01-04 0.901622 -0.535862 -0.439763 -0.640594# 2013-01-05 -1.273577 -0.746785 1.448309 -0.368285# 2013-01-06 0.191289 -1.246213 0.184757 -1.143074

在原有DataFrame的基础上,可以创建一个新的DataFrame,或者将原有DataFrame按行进行汇总统计创建一个新的DataFrame。

import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC')) print(df) df1 = pd.DataFrame() df1['min'] = df.min() df1['max'] = df.max() df1['std'] = df.std() print(df1) df['min'] = df.min(axis=1) df['max'] = df.max(axis=1) df['std'] = df.std(axis=1) print(df)# output:# A B C# 2013-01-01 0.901073 1.706925 -0.503194# 2013-01-02 0.379870 0.729674 0.579337# 2013-01-03 -1.285323 -0.665951 -0.161148# 2013-01-04 -0.714282 0.423376 0.586061# 2013-01-05 -0.895171 -0.413328 0.485803# 2013-01-06 1.926472 -0.718467 1.113522# min max std# A -1.285323 1.926472 1.234084# B -0.718467 1.706925 0.955797# C -0.503194 1.113522 0.582913# A B C min max std# 2013-01-01 0.901073 1.706925 -0.503194 -0.503194 1.706925 1.113132# 2013-01-02 0.379870 0.729674 0.579337 0.379870 0.729674 0.175247# 2013-01-03 -1.285323 -0.665951 -0.161148 -1.285323 -0.161148 0.562671# 2013-01-04 -0.714282 0.423376 0.586061 -0.714282 0.586061 0.685749# 2013-01-05 -0.895171 -0.413328 0.485803 -0.895171 0.485803 0.696763# 2013-01-06 1.926472 -0.718467 1.113522 -0.718467 1.926472 1.341957

axis=0,对DataFrame的每一列数据进行统计运算,得到一行。axis=0,对DataFrame的每一行数据进行统计运算,得到一列。
DataFrame可以修改index和columns。

import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC')) print(df) df = df.rename(index=lambda x: x + 5, columns={'A': 'newA', 'B': 'newB'}) print(df)# output:# A B C# 2013-01-01 0.834910 0.652175 0.537611# 2013-01-02 1.083902 0.836208 -1.466876# 2013-01-03 -0.044256 0.932547 1.843682# 2013-01-04 1.610113 -0.705734 -0.145042# 2013-01-05 1.114897 0.273569 -0.047725# 2013-01-06 -0.541942 -0.112752 1.644338# newA newB C# 2013-01-06 0.834910 0.652175 0.537611# 2013-01-07 1.083902 0.836208 -1.466876# 2013-01-08 -0.044256 0.932547 1.843682# 2013-01-09 1.610113 -0.705734 -0.145042# 2013-01-10 1.114897 0.273569 -0.047725# 2013-01-11 -0.541942 -0.112752 1.644338

列数据的单位统一

import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) df['D'] = [10000, 34000, 60000, 34000, 56000, 80000] print(df) for i in range(len(df['D'])): weight = float(df.iloc[i, 3]) / 10000 df.iloc[i, 3] = '{}万'.format(weight) print(df)# output:# A B C D# 2019-01-01 -0.889533 -0.411451 0.563969 10000# 2019-01-02 -0.573239 0.264805 -0.058530 34000# 2019-01-03 1.224993 -1.815338 -2.075301 60000# 2019-01-04 0.266483 1.841926 -0.759681 34000# 2019-01-05 -0.167595 0.432617 0.533577 56000# 2019-01-06 -0.973877 0.700821 1.093101 80000# A B C D# 2019-01-01 -0.889533 -0.411451 0.563969 1.0万# 2019-01-02 -0.573239 0.264805 -0.058530 3.4万# 2019-01-03 1.224993 -1.815338 -2.075301 6.0万# 2019-01-04 0.266483 1.841926 -0.759681 3.4万# 2019-01-05 -0.167595 0.432617 0.533577 5.6万# 2019-01-06 -0.973877 0.700821 1.093101 8.0万4、重复值删除

df.duplicated(self, subset=None, keep='first')
检查DataFrame是否有重复数据。
subset:子集,列标签或列标签的序列
keep:可选值为first,last,False,first表示保留第一个出现的值,last表示保留最后一个出现的值,False表示保留所有的值。
df.drop_duplicates(self, subset=None, keep='first', inplace=False)
删除DataFrame的重复数据。
subset:子集,列标签或列标签的序列
keep:可选值为first,last,False,first表示保留第一个出现的值,last表示保留最后一个出现的值,False表示保留所有的值。
inplace:值为True表示修改源数据,值为False表示不修改源数据

import pandas as pdimport numpy as npif __name__ == "__main__": data = [['Alex', np.nan, 80], ['Bob', 25, 90], ['Bob', 25, 90]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) # 使用bool过滤,取出重复的值 print(df[df.duplicated(keep=False)]) # 删除重复值,修改源数据 df.drop_duplicates(keep='last', inplace=True) print(df)# output:# Name Age Score# 0 Alex NaN 80# 1 Bob 25.0 90# 2 Bob 25.0 90# Name Age Score# 1 Bob 25.0 90# 2 Bob 25.0 90# Name Age Score# 0 Alex NaN 80# 2 Bob 25.0 905、异常值处理

异常值分为两种,一种是非法数据,如数字列的中间夹杂着一些汉字或者是符号;第二种是异常数据,异乎寻常的大数值或者是小数值。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npdef swap(x): if type(x) == str: if x[-1] == '岁': x = int(x[:-1]) elif x[-1] == '分': x = int(x[:-1]) return xif __name__ == "__main__": data = [['Alex', np.nan, '89分'], ['Bob', '25岁', '90分'], ['Bob', '28岁', '90分']] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) df = df.applymap(swap) print(df)# output:# Name Age Score# 0 Alex NaN 89分# 1 Bob 25岁 90分# 2 Bob 28岁 90分# Name Age Score# 0 Alex NaN 89# 1 Bob 25.0 90# 2 Bob 28.0 906、数据格式清洗

清除字段字符的前后空格
df[‘city’]=df[‘city’].map(str.strip)
将字段进行大小写转换:
df[‘city’]=df[‘city’].str.lower()

import pandas as pdimport numpy as npif __name__ == "__main__": data = [['Alex', np.nan, 80], [' Bob ', 25, 90], [' Bob', 25, 90]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) # 清除字符串前后空格 print(df['Name'].map(str.strip)) # 大小写转换 print(df['Name'].str.lower())# output:# Name Age Score# 0 Alex NaN 80# 1 Bob 25.0 90# 2 Bob 25.0 90# 0 Alex# 1 Bob# 2 Bob# Name: Name, dtype: object# 0 alex# 1 bob # 2 bob# Name: Name, dtype: object

更改列的数据类型:
df[‘price’].astype(‘int’)

7、数据替换

df[‘city’].replace(‘sh’, ‘shanghai’)import pandas as pdimport numpy as npif __name__ == "__main__": data = [['Alex', np.nan, 80], ['Bob', 25, 90], ['Bob', 25, 90]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df['Name'].replace('Bob', 'Bauer'))# output:# Name Age Score# 0 Alex NaN 80# 1 Bob 25.0 90# 2 Bob 25.0 90# 0 Alex# 1 Bauer# 2 Bauer# Name: Name, dtype: object

替换时,字符串前后不能有空格存在,必须严格匹配。

三、数据处理1、排序

(1)按标签排序

sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None)

使用sort_index()函数,通过传递axis参数和排序顺序,可以对DataFrame进行排序。 默认情况下,按照升序对行标签进行排序。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col1', 'col2', 'col3']) print(df) df = df.sort_index() print(df)# output:# col1 col2 col3# rank2 -0.627700 -0.361006 -1.126366# rank1 -1.997538 1.569461 0.454773# rank4 -0.598688 1.348594 0.777791# rank3 -0.190794 -1.209312 0.830699# col1 col2 col3# rank1 -1.997538 1.569461 0.454773# rank2 -0.627700 -0.361006 -1.126366# rank3 -0.190794 -1.209312 0.830699# rank4 -0.598688 1.348594 0.777791

通过将布尔值传递给升序参数ascending,可以控制排序顺序;通过传递axis参数值为1,可以对列标签进行排序。 默认情况下,axis = 0,对行标签进行排序。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) # 按列标签进行排序 df = df.sort_index(ascending=True, axis=1) print(df)# output:# col3 col2 col1# rank2 -0.715319 -0.245760 -1.282737# rank1 0.046705 -0.202133 0.185576# rank4 -1.608270 -0.491281 0.047686# rank3 -1.013456 -0.020197 1.184151# col1 col2 col3# rank2 -1.282737 -0.245760 -0.715319# rank1 0.185576 -0.202133 0.046705# rank4 0.047686 -0.491281 -1.608270# rank3 1.184151 -0.020197 -1.013456

(2)按值排序

sort_values(self, by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')

使用sort_values函数可以按值排序,接收一个by参数,使用DataFrame的列名称作为值,根据某列进行排序。by可以是列名称的列表。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) df = df.sort_values(by="col2") print(df)# output:# col3 col2 col1# rank2 -0.706054 -2.135880 1.066836# rank1 0.290660 -2.214451 -1.724394# rank4 1.211874 0.475177 -0.711855# rank3 -0.253331 1.211301 -0.208633# col3 col2 col1# rank1 0.290660 -2.214451 -1.724394# rank2 -0.706054 -2.135880 1.066836# rank4 1.211874 0.475177 -0.711855# rank3 -0.253331 1.211301 -0.208633

sort_values()提供mergesort,heapsort和quicksort三种排序算法,mergesort是唯一的稳定排序算法,通过参数kind进行传递。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) df = df.sort_values(by="col2", kind='mergesort') print(df)# output:# col3 col2 col1# rank2 -0.243768 -0.344846 0.535481# rank1 -1.491950 0.690749 -2.023808# rank4 -0.656292 -0.704788 0.655129# rank3 0.468007 -0.250702 0.079670# col3 col2 col1# rank4 -0.656292 -0.704788 0.655129# rank2 -0.243768 -0.344846 0.535481# rank3 0.468007 -0.250702 0.079670# rank1 -1.491950 0.690749 -2.023808

按顺序进行多列降序排序

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) df = df.sort_values(by=['col1', 'col3'], ascending=True, axis=0) print(df)# output:# col3 col2 col1# rank2 1.035965 1.048124 -0.341586# rank1 2.391899 -1.575462 0.616940# rank4 0.968523 -0.932288 -0.553498# rank3 0.585521 1.907344 -0.264500# col3 col2 col1# rank4 0.968523 -0.932288 -0.553498# rank2 1.035965 1.048124 -0.341586# rank3 0.585521 1.907344 -0.264500# rank1 2.391899 -1.575462 0.6169402、分组

Pandas可以使用groupby函数对DataFrame进行拆分,得到分组对象。

df.groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, **kwargs)

by:分组方式,可以是字典、函数、标签、标签列表

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90], ['Jack', 26, 80]] df = pd.DataFrame(data, index=['a', 'b', 'c', 'd'], columns=['Name', 'Age', 'A']) print(df) group_obj1 = df.groupby('Name') print(group_obj1.groups) print('===================================') # 单层分组迭代 for key, data in group_obj1: print(key) print(data) group_obj2 = df.groupby(['Name', 'A']) # 分组信息查看 print(group_obj2.groups) print('===================================') # 多层分组迭代 for key, data in group_obj2: print(key) print(data)# output:# Name Age A# a Alex 24 80# b Bob 25 90# c Bauer 25 90# d Jack 26 80# {'Alex': Index(['a'], dtype='object'), 'Bauer': Index(['c'], dtype='object'), 'Bob': Index(['b'], dtype='object'), 'Jack': Index(['d'], dtype='object')}# ===================================# Alex# Name Age A# a Alex 24 80# Bauer# Name Age A# c Bauer 25 90# Bob# Name Age A# b Bob 25 90# Jack# Name Age A# d Jack 26 80# {('Alex', 80): Index(['a'], dtype='object'), ('Bauer', 90): Index(['c'], dtype='object'), ('Bob', 90): Index(['b'], dtype='object'), ('Jack', 80): Index(['d'], dtype='object')}# ===================================# ('Alex', 80)# Name Age A# a Alex 24 80# ('Bauer', 90)# Name Age A# c Bauer 25 90# ('Bob', 90)# Name Age A# b Bob 25 90# ('Jack', 80)# Name Age A# d Jack 26 80

filter()函数可以用于过滤数据。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data = [['Alex', 24, 80], ['Bob', 25, 92], ['Bauer', 25, 90], ['Jack', 26, 80]] df = pd.DataFrame(data, index=['a', 'b', 'c', 'd'], columns=['Name', 'Age', 'A']) print(df) group_obj1 = df.groupby('Age') print(group_obj1.groups) # 过滤年龄相同的人 group = group_obj1.filter(lambda x: len(x) > 1) print(group)# output:# Name Age A# a Alex 24 80# b Bob 25 92# c Bauer 25 90# d Jack 26 80# {24: Index(['a'], dtype='object'), 25: Index(['b', 'c'], dtype='object'), 26: Index(['d'], dtype='object')}# Name Age A# b Bob 25 92# c Bauer 25 903、合并

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True)
合并两个DataFrame对象。
left ,左DataFrame对象。
right,右DataFrame对象。
on,列(名称)连接,必须在左DataFrame和右DataFrame对象中存在(找到)。
left_on,左侧DataFrame中的列用作键,可以是列名或长度等于DataFrame长度的数组。
right_on,来自右DataFrame的列作为键,可以是列名或长度等于DataFrame长度的数组。
left_index,如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。 在具有MultiIndex(分层)的DataFrame的情况下,级别的数量必须与来自右DataFrame的连接键的数量相匹配。
right_index ,与右DataFrame的left_index具有相同的用法。
how,可选值为left, right, outer,inner,默认为inner。
sort,按照字典顺序通过连接键对结果DataFrame进行排序。默认为True,设置为False时,可以大大提高性能。
在一个键上合并两个DataFrame的示例如下:

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data1 = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['Name', 'Age', 'A']) data2 = [['Alex', 87, 78], ['Bob', 67, 87], ['Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='Name') print(df)# output:# Name Age A# 0 Alex 24 80# 1 Bob 25 90# 2 Bauer 25 90# ==================================# Name B C# 0 Alex 87 78# 1 Bob 67 87# 2 Bauer 98 78# ==================================# Name Age A B C# 0 Alex 24 80 87 78# 1 Bob 25 90 67 87# 2 Bauer 25 90 98 78

合并多个键上的两个DataFrame的示例如下:

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on=['ID', 'Name']) print(df)# output:# ID Name Age A# 0 1 Alex 24 80# 1 2 Bob 25 90# 2 3 Bauer 25 90# ==================================# ID Name B C# 0 1 Alex 87 78# 1 4 Bob 67 87# 2 3 Bauer 98 78# ==================================# ID Name Age A B C# 0 1 Alex 24 80 87 78# 1 3 Bauer 25 90 98 78

使用“how”参数进行合并,如何合并参数指定如何确定哪些键将被包含在结果表中。如果组合键没有出现在左侧或右侧表中,则连接表中的值将为NA。
left:LEFT OUTER JOIN,使用左侧对象的键。
right:RIGHT OUTER JOIN,使用右侧对象的键。
outer:FULL OUTER JOIN,使用键的联合。
inner:INNER JOIN,使用键的交集。
Left Join示例:

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='ID', how='left') print(df)# output:# ID Name Age A# 0 1 Alex 24 80# 1 2 Bob 25 90# 2 3 Bauer 25 90# ==================================# ID Name B C# 0 1 Alex 87 78# 1 4 Bob 67 87# 2 3 Bauer 98 78# ==================================# ID Name_x Age A Name_y B C# 0 1 Alex 24 80 Alex 87.0 78.0# 1 2 Bob 25 90 NaN NaN NaN# 2 3 Bauer 25 90 Bauer 98.0 78.0

Right Join示例:

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='ID', how='right') print(df)# output:# ID Name Age A# 0 1 Alex 24 80# 1 2 Bob 25 90# 2 3 Bauer 25 90# ==================================# ID Name B C# 0 1 Alex 87 78# 1 4 Bob 67 87# 2 3 Bauer 98 78# ==================================# ID Name_x Age A Name_y B C# 0 1 Alex 24.0 80.0 Alex 87 78# 1 3 Bauer 25.0 90.0 Bauer 98 78# 2 4 NaN NaN NaN Bob 67 87

Outer Join示例:

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='ID', how='outer') print(df)# output:# ID Name Age A# 0 1 Alex 24 80# 1 2 Bob 25 90# 2 3 Bauer 25 90# ==================================# ID Name B C# 0 1 Alex 87 78# 1 4 Bob 67 87# 2 3 Bauer 98 78# ==================================# ID Name_x Age A Name_y B C# 0 1 Alex 24.0 80.0 Alex 87.0 78.0# 1 2 Bob 25.0 90.0 NaN NaN NaN# 2 3 Bauer 25.0 90.0 Bauer 98.0 78.0# 3 4 NaN NaN NaN Bob 67.0 87.0

Inner Join示例:

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data1 = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] left = pd.DataFrame(data1, columns=['ID', 'Name', 'Age', 'A']) data2 = [[1, 'Alex', 87, 78], [4, 'Bob', 67, 87], [3, 'Bauer', 98, 78]] right = pd.DataFrame(data2, columns=['ID', 'Name', 'B', 'C']) print(left) print('==================================') print(right) print('==================================') df = pd.merge(left, right, on='ID', how='inner') print(df)# output:# ID Name Age A# 0 1 Alex 24 80# 1 2 Bob 25 90# 2 3 Bauer 25 90# ==================================# ID Name B C# 0 1 Alex 87 78# 1 4 Bob 67 87# 2 3 Bauer 98 78# ==================================# ID Name_x Age A Name_y B C# 0 1 Alex 24 80 Alex 87 78# 1 3 Bauer 25 90 Bauer 98 784、级联

concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=None, copy=True)

沿某个轴进行级联操作。
objs,Series、DataFrame或Panel对象的序列或字典。
axis,{0,1,...},默认为0,axis=0表示按index进行级联,axis=1表示按columns进行级联。
join,{'inner', 'outer'},默认inner,指示如何处理其它轴上的索引。
ignore_index,布尔值,默认为False。如果指定为True,则不使用连接轴上的索引值。结果轴将被标记为:0,...,n-1。
join_axes ,Index对象的列表。用于其它(n-1)轴的特定索引,而不是执行内部/外部集逻辑。
sort:是否进行排序,True会进行排序,False不进行排序。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data1 = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90]] one = pd.DataFrame(data1, columns=['Name', 'Age', 'A']) data2 = [['Alex', 87, 78], ['Bob', 67, 87], ['Bauer', 98, 78]] two = pd.DataFrame(data2, columns=['Name', 'B', 'C']) print(one) print('==================================') print(two) print('==================================') df = pd.concat([one, two], axis=1, sort=False) print(df)# output:# Name Age A# 0 Alex 24 80# 1 Bob 25 90# 2 Bauer 25 90# ==================================# Name B C# 0 Alex 87 78# 1 Bob 67 87# 2 Bauer 98 78# ==================================# Name Age A Name B C# 0 Alex 24 80 Alex 87 78# 1 Bob 25 90 Bob 67 87# 2 Bauer 25 90 Bauer 98 78

当结果的索引是重复的,如果想要生成的对象必须遵循自己的索引,需要将ignore_index设置为True。
Pandas提供了连接DataFrame的append方法,沿axis=0连接。

df.append(self, other, ignore_index=False, verify_integrity=False, sort=None)

向DataFrame对象中添加新的行,如果添加的列名不在DataFrame对象中,将会被当作新的列进行添加。
other:DataFrame、series、dict、list
ignore_index:默认值为False,如果为True则不使用index标签。
verify_integrity :默认值为False,如果为True当创建相同的index时会抛出ValueError的异常。
sort:boolean,默认是None。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data1 = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90]] one = pd.DataFrame(data1, columns=['Name', 'Age', 'A']) data2 = [['Alex', 87, 78], ['Bob', 67, 87], ['Bauer', 98, 78]] two = pd.DataFrame(data2, columns=['Name', 'B', 'C']) print(one) print('==================================') print(two) print('==================================') df = one.append(two, sort=False) print(df)# output:# Name Age A# 0 Alex 24 80# 1 Bob 25 90# 2 Bauer 25 90# ==================================# Name B C# 0 Alex 87 78# 1 Bob 67 87# 2 Bauer 98 78# ==================================# Name Age A B C# 0 Alex 24.0 80.0 NaN NaN# 1 Bob 25.0 90.0 NaN NaN# 2 Bauer 25.0 90.0 NaN NaN# 0 Alex NaN NaN 87.0 78.0# 1 Bob NaN NaN 67.0 87.0# 2 Bauer NaN NaN 98.0 78.0

Pandas提供了连接DataFrame的join方法,沿axis=1连接,用于将两个DataFrame中的不同的列索引合并成为一个DataFrame。

df.join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False)

join方法提供SQL的Join操作,默认为为左外连接how=left。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data1 = [['Alex', 24, 80], ['Bob', 25, 90], ['Bauer', 25, 90],['Jack', 26, 80]] one = pd.DataFrame(data1, index=['a', 'b', 'c', 'd'], columns=['Name', 'Age', 'A']) data2 = [[87, 78], [67, 87], [98, 78]] two = pd.DataFrame(data2, index=['a', 'b', 'c'], columns=['B', 'C']) print(one) print('==================================') print(two) print('==================================') df = one.join(two) print(df)# output:# Name Age A# a Alex 24 80# b Bob 25 90# c Bauer 25 90# d Jack 26 80# ==================================# B C# a 87 78# b 67 87# c 98 78# ==================================# Name Age A B C# a Alex 24 80 87.0 78.0# b Bob 25 90 67.0 87.0# c Bauer 25 90 98.0 78.0# d Jack 26 80 NaN NaN5、迭代

迭代DataFrame提供列名。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df) for col in df: print(col, end=' ')# output:# A B C D# 2019-01-01 -0.415754 -1.214340 -0.103952 1.232414# 2019-01-02 -0.367888 0.257199 -1.615029 -0.335322# 2019-01-03 0.552697 0.202993 -1.000219 -0.530897# 2019-01-04 0.503410 -1.610091 1.660362 0.649700# 2019-01-05 0.575416 -1.962578 -1.681379 -0.425239# 2019-01-06 1.075917 -0.499081 1.886878 -0.073895# A B C D

df.iteritems()用于迭代(key,value)对,将每个列标签作为key,value为Series对象。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": dates = pd.date_range('20190101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) print(df) for key, value in df.iteritems(): print(key, value)# output:# A B C D# 2019-01-01 -0.302021 1.343811 -0.070351 -0.409479# 2019-01-02 -0.365564 0.743572 -0.475075 1.026054# 2019-01-03 0.025748 1.395340 -0.987686 0.141003# 2019-01-04 -0.291348 -1.173600 -2.286905 0.528416# 2019-01-05 -1.844523 -0.052567 0.575980 0.260001# 2019-01-06 0.271046 -0.583334 -0.596251 0.772095# A 2019-01-01 -0.302021# 2019-01-02 -0.365564# 2019-01-03 0.025748# 2019-01-04 -0.291348# 2019-01-05 -1.844523# 2019-01-06 0.271046# Freq: D, Name: A, dtype: float64# B 2019-01-01 1.343811# 2019-01-02 0.743572# 2019-01-03 1.395340# 2019-01-04 -1.173600# 2019-01-05 -0.052567# 2019-01-06 -0.583334# Freq: D, Name: B, dtype: float64# C 2019-01-01 -0.070351# 2019-01-02 -0.475075# 2019-01-03 -0.987686# 2019-01-04 -2.286905# 2019-01-05 0.575980# 2019-01-06 -0.596251# Freq: D, Name: C, dtype: float64# D 2019-01-01 -0.409479# 2019-01-02 1.026054# 2019-01-03 0.141003# 2019-01-04 0.528416# 2019-01-05 0.260001# 2019-01-06 0.772095# Freq: D, Name: D, dtype: float64

df.iterrows()用于返回迭代器,产生每个index以及包含每行数据的Series。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(6, 4), columns=list('ABCD')) print(df) for index, value in df.iterrows(): print(index, value)# output:# A B C D# 0 -1.097851 0.785749 -1.727198 -1.120925# 1 -1.420429 0.094384 -1.566202 0.237084# 2 -0.761957 0.552395 0.680884 -0.290955# 3 0.357713 -0.323331 1.438013 -1.334616# 4 0.015467 -2.431556 -0.717285 -0.094409# 5 -1.198224 -1.370170 0.201725 0.258093# 0 A -1.097851# B 0.785749# C -1.727198# D -1.120925# Name: 0, dtype: float64# 1 A -1.420429# B 0.094384# C -1.566202# D 0.237084# Name: 1, dtype: float64# 2 A -0.761957# B 0.552395# C 0.680884# D -0.290955# Name: 2, dtype: float64# 3 A 0.357713# B -0.323331# C 1.438013# D -1.334616# Name: 3, dtype: float64# 4 A 0.015467# B -2.431556# C -0.717285# D -0.094409# Name: 4, dtype: float64# 5 A -1.198224# B -1.370170# C 0.201725# D 0.258093# Name: 5, dtype: float64

df.itertuples()方法将为DataFrame中的每一行返回一个产生一个命名元组的迭代器。元组的第一个元素是行的index,而剩余的值是行值。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(6, 4), columns=list('ABCD')) print(df) for row in df.itertuples(): print(row)# output:# A B C D# 0 0.681324 1.047734 -1.909570 -0.845900# 1 -0.879077 -0.897085 -0.795461 -0.634519# 2 0.484502 -0.061608 0.605827 -0.321721# 3 -0.051974 1.533112 -1.011544 -0.922280# 4 -0.634157 -0.173692 1.228584 -1.229581# 5 0.236769 -0.933609 0.111948 1.048215# Pandas(Index=0, A=0.6813238552921729, B=1.0477343302788706, C=-1.909570436815022, D=-0.8459001766064564)# Pandas(Index=1, A=-0.8790771200969485, B=-0.8970849190216943, C=-0.7954606477323869, D=-0.6345188867416923)# Pandas(Index=2, A=0.48450157948338324, B=-0.061608014575315506, C=0.6058267522125123, D=-0.32172144100965605)# Pandas(Index=3, A=-0.05197447447575398, B=1.5331115391025778, C=-1.0115444345763995, D=-0.9222798204619236)# Pandas(Index=4, A=-0.6341570074338677, B=-0.173692444412635, C=1.2285839004083785, D=-1.2295807166909738)# Pandas(Index=5, A=0.23676890089548117, B=-0.9336090868233837, C=0.11194794444517034, D=1.0482154173833818)

迭代用于读取,迭代器返回原始对象(视图)的副本,因此迭代时更改将不会反映在原始对象上。

6、SQL化操作

在SQL中,SELECT使用逗号分隔的列列表(或选择所有列)来完成。
SELECT ID, Name FROM tablename LIMIT 5;
在Pandas中,列选择通过传递列名到DataFrame。
df[['ID', 'Name']].head(5)
SELECT操作示例:

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] df = pd.DataFrame(data, columns=['ID', 'Name', 'Age', 'A']) print(df) print(df[['ID', 'Name']].head(5))# output:# ID Name Age A# 0 1 Alex 24 80# 1 2 Bob 25 90# 2 3 Bauer 25 90# ID Name# 0 1 Alex# 1 2 Bob# 2 3 Bauer

在SQL中,使用WHERE进行条件过滤。
SELECT * FROM tablename WHERE Name = 'Bauer' LIMIT 5;
在Pandas中,通常使用布尔索引进行过滤。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": data = [[1, 'Alex', 24, 80], [2, 'Bob', 25, 90], [3, 'Bauer', 25, 90]] df = pd.DataFrame(data, columns=['ID', 'Name', 'Age', 'A']) print(df) print('===========================') print(df[df['Name'] == 'Bauer'].head(5))# output:# ID Name Age A# 0 1 Alex 24 80# 1 2 Bob 25 90# 2 3 Bauer 25 90# ===========================# ID Name Age A# 2 3 Bauer 25 90四、数据分析1、描述性统计

(1)sum
返回所请求轴的值的总和。 默认情况下,轴为索引(axis=0)。

import pandas as pdif __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.sum()) print(df.sum(1))# output:# Name Age Score# 0 Alex 25 80# 1 Bob 26 90# 2 Bauer 24 87# Name AlexBobBauer# Age 75# Score 257# dtype: object# 0 105# 1 116# 2 111# dtype: int64

(2)mean
返回平均值。

import pandas as pdif __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.mean())# output:# Name Age Score# 0 Alex 25 80# 1 Bob 26 90# 2 Bauer 24 87# Age 25.000000# Score 85.666667# dtype: float64

(3)std
返回数字列的Bressel标准偏差。

import pandas as pdif __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.std())# output:# Name Age Score# 0 Alex 25 80# 1 Bob 26 90# 2 Bauer 24 87# Age 1.000000# Score 5.131601# dtype: float64

(4)median
求所有值的中位数。

import pandas as pdif __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.median())# output:# Name Age Score# 0 Alex 25 80# 1 Bob 26 90# 2 Bauer 24 87# Age 25.0# Score 87.0# dtype: float64

(5)min
求所有值中的最小值。

import pandas as pdif __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.min())# output:# Name Age Score# 0 Alex 25 80# 1 Bob 26 90# 2 Bauer 24 87# Name Alex# Age 24# Score 80# dtype: object

(6)max
求所有值中的最大值。

import pandas as pdif __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.max())# output:# Name Age Score# 0 Alex 25 80# 1 Bob 26 90# 2 Bauer 24 87# Name Bob# Age 26# Score 90# dtype: object

(7)describe
汇总有关DataFrame列的统计信息的摘要。
def describe(self, percentiles=None, include=None, exclude=None)
include用于传递关于什么列需要考虑用于总结的必要信息的参数。获取值列表,默认情况下是number 。
object - 汇总字符串列
number - 汇总数字列
all - 将所有列汇总在一起(不应将其作为列表值传递)

import pandas as pdif __name__ == "__main__": data = [['Alex', 25, 80], ['Bob', 26, 90], ['Bauer', 24, 87]] df = pd.DataFrame(data, columns=['Name', 'Age', 'Score']) print(df) print(df.describe(include="all"))# output:# Name Age Score# 0 Alex 25 80# 1 Bob 26 90# 2 Bauer 24 87# Name Age Score# count 3 3.0 3.000000# unique 3 NaN NaN# top Alex NaN NaN# freq 1 NaN NaN# mean NaN 25.0 85.666667# std NaN 1.0 5.131601# min NaN 24.0 80.000000# 25% NaN 24.5 83.500000# 50% NaN 25.0 87.000000# 75% NaN 25.5 88.500000# max NaN 26.0 90.000000

abs:求所有值的绝对值
prod:求所有值的乘积
cumsum:累计总和
cumprod:累计乘积

2、百分比变化

Series,DatFrames和Panel都有pct_change()函数,用于将每个元素与其前一个元素进行比较,并计算变化百分比。默认情况下,pct_change()对列进行操作; 如果想应用到行上,那么可使用axis = 1参数。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1']) print(df) print(df.pct_change())# output:# col3 col2 col1# rank2 0.988739 2.062798 1.400892# rank1 0.394663 -0.988307 1.583098# rank4 -0.768109 -0.163727 -1.801323# rank3 0.999816 -1.224068 1.470020# col3 col2 col1# rank2 NaN NaN NaN# rank1 -0.600842 -1.479110 0.130064# rank4 -2.946241 -0.834336 -2.137846# rank3 -2.301659 6.476294 -1.8160783、协方差

协方差适用于Series数据,Series对象有一个方法cov用来计算Series对象之间的协方差,NA将被自动排除。当应用于DataFrame对象时,协方差方法计算所有列之间的协方差(cov)值。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(3, 5), columns=['a', 'b', 'c', 'd', 'e']) print(df) print(df['a'].cov(df['b'])) print(df.cov())# output:# a b c d e# 0 1.168443 -0.343905 2.254448 0.269765 -0.928009# 1 0.542551 -1.303205 -1.767313 -0.349884 -0.352578# 2 -2.028410 -1.176339 0.156047 1.426468 -1.338805# 0.48923631972868176# a b c d e# a 2.870241 0.489236 0.713430 -1.312818 0.581441# b 0.489236 0.271550 0.974811 -0.023849 -0.055862# c 0.713430 0.974811 4.046193 0.580236 -0.558184# d -1.312818 -0.023849 0.580236 0.812892 -0.430603# e 0.581441 -0.055862 -0.558184 -0.430603 0.2454204、相关性

相关性显示了任何两个数值(Series)之间的线性关系。有多种计算相关性的方法,如pearson(默认),spearman和kendall。如果DataFrame中存在任何非数字列,则会自动排除。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": df = pd.DataFrame(np.random.randn(3, 5), columns=['a', 'b', 'c', 'd', 'e']) print(df) print(df['a'].corr(df['b'])) print(df.corr())# output:# a b c d e# 0 -2.110756 0.693665 0.405701 -0.628349 -1.062029# 1 -1.331364 1.283434 1.619166 -0.025866 1.742287# 2 -1.159944 0.435840 -0.251710 -0.347102 -0.026825# 0.052396578025987336# a b c d e# a 1.000000 0.052397 -0.000006 0.743940 0.664845# b 0.052397 1.000000 0.998626 0.706309 0.780790# c -0.000006 0.998626 1.000000 0.668242 0.746977# d 0.743940 0.706309 0.668242 1.000000 0.993772# e 0.664845 0.780790 0.746977 0.993772 1.0000005、数据排名

数据排名为元素数组中的每个元素生成排名。在关系的情况下,分配平均等级。

# -*- coding=utf-8 -*-import pandas as pdimport numpy as npif __name__ == "__main__": s = pd.Series(np.random.randn(5), index=list('abcde')) print(s) s['a'] = s['c'] print(s.rank())# output:# a 1.597684# a 1.597684# b 1.107413# c -0.298296# d -0.281076# e -0.667954# dtype: float64# a 2.5# b 5.0# c 2.5# d 4.0# e 1.0# dtype: float64

rank使用一个默认为True的升序参数; False时,数据被反向排序,较大的值被分配较小的排序。