这篇文章主要为大家展示了“pytorch中的矩阵如何拼接”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pytorch中的矩阵如何拼接”这篇文章吧。

1 squeeze(): 去除size为1的维度,包括行和列。

至于维度大于等于2时,squeeze()不起作用。

行、例:

>>>torch.rand(4,1,3)(0,.,.)=0.53910.85230.9260(1,.,.)=0.25070.95120.6578(2,.,.)=0.73020.35310.9442(3,.,.)=0.26890.43670.6610[torch.FloatTensorofsize4x1x3]

>>>torch.rand(4,1,3).squeeze()0.08010.46000.17990.02360.71370.61280.02420.38470.45460.90040.50180.4021[torch.FloatTensorofsize4x3]列、例:

>>>torch.rand(4,3,1)(0,.,.)=0.70130.98180.9723(1,.,.)=0.99020.83540.3864(2,.,.)=0.46200.08440.5707(3,.,.)=0.57220.24940.5815[torch.FloatTensorofsize4x3x1]

>>>torch.rand(4,3,1).squeeze()0.87840.62030.82130.72380.54470.82530.17190.78300.10460.02330.97710.2278[torch.FloatTensorofsize4x3]不变、例:

>>>torch.rand(4,3,2)(0,.,.)=0.66180.16780.34760.03290.18650.4349(1,.,.)=0.75880.89720.33390.83760.62890.9456(2,.,.)=0.13920.03200.00330.01870.82290.0005(3,.,.)=0.23270.62640.48100.66420.86250.6334[torch.FloatTensorofsize4x3x2]

>>>torch.rand(4,3,2).squeeze()(0,.,.)=0.05930.89100.97790.15300.92100.2248(1,.,.)=0.79380.93620.10640.66300.93210.0453(2,.,.)=0.01890.91870.44580.99250.99280.7895(3,.,.)=0.51160.72530.01320.66730.94100.8159[torch.FloatTensorofsize4x3x2]2 cat函数

>>>t1=torch.FloatTensor(torch.randn(2,3))>>>t1-1.94051.20090.00180.94630.4409-1.9017[torch.FloatTensorofsize2x3]

>>>t2=torch.FloatTensor(torch.randn(2,2))>>>t20.09420.15811.16211.2617[torch.FloatTensorofsize2x2]

>>>torch.cat((t1,t2),1)-1.94051.20090.00180.09420.15810.94630.4409-1.90171.16211.2617[torch.FloatTensorofsize2x5]

补充:pytorch中 max()、view()、 squeeze()、 unsqueeze()

查了好多博客都似懂非懂,后来写了几个小例子,瞬间一目了然。

一、torch.max()

importtorcha=torch.randn(3)print("a:",a)print('max(a):',torch.max(a))b=torch.randn(3,4)print("b:",b)print('max(b,0):',torch.max(b,0))print('max(b,1):',torch.max(b,1))

输出:

a:
tensor([ 0.9558, 1.1242, 1.9503])
max(a): tensor(1.9503)
b:
tensor([[ 0.2765, 0.0726, -0.7753, 1.5334],
[ 0.0201, -0.0005, 0.2616, -1.1912],
[-0.6225, 0.6477, 0.8259, 0.3526]])
max(b,0): (tensor([ 0.2765, 0.6477, 0.8259, 1.5334]), tensor([ 0, 2, 2, 0]))
max(b,1): (tensor([ 1.5334, 0.2616, 0.8259]), tensor([ 3, 2, 2]))

max(a),用于一维数据,求出最大值。

max(a,0),计算出数据中一列的最大值,并输出最大值所在的行号。

max(a,1),计算出数据中一行的最大值,并输出最大值所在的列号。

print('max(b,1):',torch.max(b,1)[1])

输出:只输出行最大值所在的列号

max(b,1):tensor([3,2,2])

torch.max(b,1)[0], 只返回最大值的每个数

二、view()

a.view(i,j)表示将原矩阵转化为i行j列的形式

i为-1表示不限制行数,输出1列

a=torch.randn(3,4)print(a)

输出:

tensor([[-0.8146, -0.6592, 1.5100, 0.7615],
[ 1.3021, 1.8362, -0.3590, 0.3028],
[ 0.0848, 0.7700, 1.0572, 0.6383]])

b=a.view(-1,1)
print(b)

输出:

tensor([[-0.8146],
[-0.6592],
[ 1.5100],
[ 0.7615],
[ 1.3021],
[ 1.8362],
[-0.3590],
[ 0.3028],
[ 0.0848],
[ 0.7700],
[ 1.0572],
[ 0.6383]])

i为1,j为-1表示不限制列数,输出1行

b=a.view(1,-1)print(b)

输出:

tensor([[-0.8146, -0.6592, 1.5100, 0.7615, 1.3021, 1.8362, -0.3590,
0.3028, 0.0848, 0.7700, 1.0572, 0.6383]])

i为-1,j为2表示不限制行数,输出2列

b=a.view(-1,2)print(b)

输出:

tensor([[-0.8146, -0.6592],
[ 1.5100, 0.7615],
[ 1.3021, 1.8362],
[-0.3590, 0.3028],
[ 0.0848, 0.7700],
[ 1.0572, 0.6383]])

i为-1,j为3表示不限制行数,输出3列

i为4,j为3表示输出4行3列

b=a.view(-1,3)print(b)b=a.view(4,3)print(b)

输出:

tensor([[-0.8146, -0.6592, 1.5100],
[ 0.7615, 1.3021, 1.8362],
[-0.3590, 0.3028, 0.0848],
[ 0.7700, 1.0572, 0.6383]])
tensor([[-0.8146, -0.6592, 1.5100],
[ 0.7615, 1.3021, 1.8362],
[-0.3590, 0.3028, 0.0848],
[ 0.7700, 1.0572, 0.6383]])

三、

1.torch.squeeze()

压缩矩阵,我理解为降维

a.squeeze(i) 压缩第i维,如果这一维维数是1,则这一维可有可无,便可以压缩

importtorcha=torch.randn(1,3,4)print(a)b=a.squeeze(0)print(b)c=a.squeeze(1)print(c

输出:

tensor([[[ 0.4627, 1.6447, 0.1320, 2.0946],
[-0.0080, 0.1794, 1.1898, -1.2525],
[ 0.8281, -0.8166, 1.8846, 0.9008]]])

一页三行4列的矩阵

第0维为1,则可以通过squeeze(0)删掉,转化为三行4列的矩阵

tensor([[ 0.4627, 1.6447, 0.1320, 2.0946],
[-0.0080, 0.1794, 1.1898, -1.2525],
[ 0.8281, -0.8166, 1.8846, 0.9008]])

第1维不为1,则不可以压缩

tensor([[[ 0.4627, 1.6447, 0.1320, 2.0946],
[-0.0080, 0.1794, 1.1898, -1.2525],
[ 0.8281, -0.8166, 1.8846, 0.9008]]])

2.torch.unsqueeze()

unsqueeze(i) 表示将第i维设置为1

对压缩为3行4列后的矩阵b进行操作,将第0维设置为1

c=b.unsqueeze(0)print(c)

输出一个一页三行四列的矩阵

tensor([[[ 0.0661, -0.2386, -0.6610, 1.5774],
[ 1.2210, -0.1084, -0.1166, -0.2379],
[-1.0012, -0.4363, 1.0057, -1.5180]]])

将第一维设置为1

c=b.unsqueeze(1)print(c)

输出一个3页,一行,4列的矩阵

tensor([[[-1.0067, -1.1477, -0.3213, -1.0633]],
[[-2.3976, 0.9857, -0.3462, -0.3648]],
[[ 1.1012, -0.4659, -0.0858, 1.6631]]])

另外,squeeze、unsqueeze操作不改变原矩阵。

以上是“pytorch中的矩阵如何拼接”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!