这篇文章将为大家详细讲解有关python如何删除指定列或多列单个或多个内容,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

在python中进行数据处理,经常会遇到有些元素内容是不需要的。需要进行删除或者替换。本篇就详细探讨一下各种数据类型(series,dataframe)下的删除方法

随机创建一个DataFrame数据

import pandas as pdimport numpy as npdata=pd.DataFrame(np.random.randint(10,size=(5,3)),columns=['a','b','c'])>>> a b c0 3 8 21 9 9 52 4 5 13 2 7 54 1 2 8

Series:

isin反函数删除不需要的列部分元素,适合大批量:

S数据类型直接使用isin会选出该列包含的指定内容,我们的需求是删除指定内容就需要用到isin的反函数。但是python目前没有类似isnotin这种函数,所以我们需要使用-号来实现isnotin的方法

!=比较运算符方式,适合少量或者用作与同时满足a条件与b条件的情况

isin:

Series的场景

print(data['c'][data['c'].isin([1])])>>>2 1Name: c, dtype: int64print(data['c'][-data['c'].isin([1])])>>>0 21 53 54 8Name: c, dtype: int64print(data['c'][-data['c'].isin([1,2])])>>>1 53 54 8Name: c, dtype: int64

DataFrame场景:

print(data[-data.isin([1,2])])#按Series逻辑操作df发现会出现NAN并没有删除掉>>> a b c0 3.0 8.0 NaN1 9.0 9.0 5.02 4.0 5.0 NaN3 NaN 7.0 5.04 NaN NaN 8.0print(data[-data.isin([1,2])].dropna())#我们只需要再加一个dropna删除空值就好了>>>a b c1 9.0 9.0 5.0

!=比较运算符:

Series的场景:

print(data['c'][data['c']!=1])>>>0 21 53 54 8Name: c, dtype: int64print(data['c'][(data['c']!=1)&((data['c']!=2))])>>>1 53 54 8Name: c, dtype: int64

DataFrame场景:

分别删除a与b不同条件的数据

print(data[(data['a']!=1)&(data['c']!=2)]>>> a b c1 9 9 52 4 5 13 2 7 5print(data[(data!=1)&(data!=2)].dropna()) #与isin原理相同 a b c1 9.0 9.0 5.0

关于python如何删除指定列或多列单个或多个内容就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。