小编给大家分享一下python中线程池的使用方法,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨方法吧!

线程池的使用线程池的基类是 concurrent.futures 模块中的 Executor,Executor 提供了两个子类,即 ThreadPoolExecutor 和 ProcessPoolExecutor,其中 ThreadPoolExecutor 用于创建线程池,而 ProcessPoolExecutor 用于创建进程池。

如果使用线程池/进程池来管理并发编程,那么只要将相应的 task 函数提交给线程池/进程池,剩下的事情就由线程池/进程池来搞定。

Exectuor 提供了如下常用方法:

submit(fn, *args, **kwargs):将 fn 函数提交给线程池。*args 代表传给 fn 函数的参数,*kwargs 代表以关键字参数的形式为 fn 函数传入参数。

map(func, *iterables, timeout=None, chunksize=1):该函数类似于全局函数 map(func, *iterables),只是该函数将会启动多个线程,以异步方式立即对 iterables 执行 map 处理。

shutdown(wait=True):关闭线程池。


程序将 task 函数提交(submit)给线程池后,submit 方法会返回一个 Future 对象,Future 类主要用于获取线程任务函数的返回值。由于线程任务会在新线程中以异步方式执行,因此,线程执行的函数相当于一个“将来完成”的任务,所以 Python 使用 Future 来代表。

实际上,在 Java 的多线程编程中同样有 Future,此处的 Future 与 Java 的 Future 大同小异。

Future 提供了如下方法:

cancel():取消该 Future 代表的线程任务。如果该任务正在执行,不可取消,则该方法返回 False;否则,程序会取消该任务,并返回 True。

cancelled():返回 Future 代表的线程任务是否被成功取消。

running():如果该 Future 代表的线程任务正在执行、不可被取消,该方法返回 True。

done():如果该 Funture 代表的线程任务被成功取消或执行完成,则该方法返回 True。

result(timeout=None):获取该 Future 代表的线程任务最后返回的结果。如果 Future 代表的线程任务还未完成,该方法将会阻塞当前线程,其中 timeout 参数指定最多阻塞多少秒。

exception(timeout=None):获取该 Future 代表的线程任务所引发的异常。如果该任务成功完成,没有异常,则该方法返回 None。

add_done_callback(fn):为该 Future 代表的线程任务注册一个“回调函数”,当该任务成功完成时,程序会自动触发该 fn 函数。


在用完一个线程池后,应该调用该线程池的 shutdown() 方法,该方法将启动线程池的关闭序列。调用 shutdown() 方法后的线程池不再接收新任务,但会将以前所有的已提交任务执行完成。当线程池中的所有任务都执行完成后,该线程池中的所有线程都会死亡。

使用线程池来执行线程任务的步骤如下:

调用 ThreadPoolExecutor 类的构造器创建一个线程池。

定义一个普通函数作为线程任务。

调用 ThreadPoolExecutor 对象的 submit() 方法来提交线程任务。

当不想提交任何任务时,调用 ThreadPoolExecutor 对象的 shutdown() 方法来关闭线程池。


下面程序示范了如何使用线程池来执行线程任务:

复制纯文本复制

fromconcurrent.futuresimportThreadPoolExecutorimportthreadingimporttime#定义一个准备作为线程任务的函数defaction(max):my_sum=0foriinrange(max):print(threading.current_thread().name+''+str(i))my_sum+=ireturnmy_sum#创建一个包含2条线程的线程池pool=ThreadPoolExecutor(max_workers=2)#向线程池提交一个task,50会作为action()函数的参数future1=pool.submit(action,50)#向线程池再提交一个task,100会作为action()函数的参数future2=pool.submit(action,100)#判断future1代表的任务是否结束print(future1.done())time.sleep(3)#判断future2代表的任务是否结束print(future2.done())#查看future1代表的任务返回的结果print(future1.result())#查看future2代表的任务返回的结果print(future2.result())#关闭线程池pool.shutdown()

fromconcurrent.futuresimportThreadPoolExecutorimportthreadingimporttime#定义一个准备作为线程任务的函数defaction(max):my_sum=0foriinrange(max):print(threading.current_thread().name+''+str(i))my_sum+=ireturnmy_sum#创建一个包含2条线程的线程池pool=ThreadPoolExecutor(max_workers=2)#向线程池提交一个task,50会作为action()函数的参数future1=pool.submit(action,50)#向线程池再提交一个task,100会作为action()函数的参数future2=pool.submit(action,100)#判断future1代表的任务是否结束print(future1.done())time.sleep(3)#判断future2代表的任务是否结束print(future2.done())#查看future1代表的任务返回的结果print(future1.result())#查看future2代表的任务返回的结果print(future2.result())#关闭线程池pool.shutdown()上面程序中,第 13 行代码创建了一个包含两个线程的线程池,接下来的两行代码只要将 action() 函数提交(submit)给线程池,该线程池就会负责启动线程来执行 action() 函数。这种启动线程的方法既优雅,又具有更高的效率。

当程序把 action() 函数提交给线程池时,submit() 方法会返回该任务所对应的 Future 对象,程序立即判断 futurel 的 done() 方法,该方法将会返回 False(表明此时该任务还未完成)。接下来主程序暂停 3 秒,然后判断 future2 的 done() 方法,如果此时该任务已经完成,那么该方法将会返回 True。

程序最后通过 Future 的 result() 方法来获取两个异步任务返回的结果。

读者可以自己运行此代码查看运行结果,这里不再演示。

当程序使用 Future 的 result() 方法来获取结果时,该方法会阻塞当前线程,如果没有指定 timeout 参数,当前线程将一直处于阻塞状态,直到 Future 代表的任务返回。
获取执行结果前面程序调用了 Future 的 result() 方法来获取线程任务的运回值,但该方法会阻塞当前主线程,只有等到钱程任务完成后,result() 方法的阻塞才会被解除。

如果程序不希望直接调用 result() 方法阻塞线程,则可通过 Future 的 add_done_callback() 方法来添加回调函数,该回调函数形如 fn(future)。当线程任务完成后,程序会自动触发该回调函数,并将对应的 Future 对象作为参数传给该回调函数。

下面程序使用 add_done_callback() 方法来获取线程任务的返回值:

复制纯文本复制

fromconcurrent.futuresimportThreadPoolExecutorimportthreadingimporttime#定义一个准备作为线程任务的函数defaction(max):my_sum=0foriinrange(max):print(threading.current_thread().name+''+str(i))my_sum+=ireturnmy_sum#创建一个包含2条线程的线程池withThreadPoolExecutor(max_workers=2)aspool:#向线程池提交一个task,50会作为action()函数的参数future1=pool.submit(action,50)#向线程池再提交一个task,100会作为action()函数的参数future2=pool.submit(action,100)defget_result(future):print(future.result())#为future1添加线程完成的回调函数future1.add_done_callback(get_result)#为future2添加线程完成的回调函数future2.add_done_callback(get_result)print('--------------')

fromconcurrent.futuresimportThreadPoolExecutorimportthreadingimporttime#定义一个准备作为线程任务的函数defaction(max):my_sum=0foriinrange(max):print(threading.current_thread().name+''+str(i))my_sum+=ireturnmy_sum#创建一个包含2条线程的线程池withThreadPoolExecutor(max_workers=2)aspool:#向线程池提交一个task,50会作为action()函数的参数future1=pool.submit(action,50)#向线程池再提交一个task,100会作为action()函数的参数future2=pool.submit(action,100)defget_result(future):print(future.result())#为future1添加线程完成的回调函数future1.add_done_callback(get_result)#为future2添加线程完成的回调函数future2.add_done_callback(get_result)print('--------------')上面主程序分别为 future1、future2 添加了同一个回调函数,该回调函数会在线程任务结束时获取其返回值。

主程序的最后一行代码打印了一条横线。由于程序并未直接调用 future1、future2 的 result() 方法,因此主线程不会被阻塞,可以立即看到输出主线程打印出的横线。接下来将会看到两个新线程并发执行,当线程任务执行完成后,get_result() 函数被触发,输出线程任务的返回值。

另外,由于线程池实现了上下文管理协议(Context Manage Protocol),因此,程序可以使用 with 语句来管理线程池,这样即可避免手动关闭线程池,如上面的程序所示。

此外,Exectuor 还提供了一个 map(func, *iterables, timeout=None, chunksize=1) 方法,该方法的功能类似于全局函数 map(),区别在于线程池的 map() 方法会为 iterables 的每个元素启动一个线程,以并发方式来执行 func 函数。这种方式相当于启动 len(iterables) 个线程,井收集每个线程的执行结果。

例如,如下程序使用 Executor 的 map() 方法来启动线程,并收集线程任务的返回值:

fromconcurrent.futuresimportThreadPoolExecutorimportthreadingimporttime#定义一个准备作为线程任务的函数defaction(max):my_sum=0foriinrange(max):print(threading.current_thread().name+''+str(i))my_sum+=ireturnmy_sum#创建一个包含4条线程的线程池withThreadPoolExecutor(max_workers=4)aspool:#使用线程执行map计算#后面元组有3个元素,因此程序启动3条线程来执行action函数results=pool.map(action,(50,100,150))print('--------------')forrinresults:print(r)

上面程序使用 map() 方法来启动 3 个线程(该程序的线程池包含 4 个线程,如果继续使用只包含两个线程的线程池,此时将有一个任务处于等待状态,必须等其中一个任务完成,线程空闲出来才会获得执行的机会),map() 方法的返回值将会收集每个线程任务的返回结果。


运行上面程序,同样可以看到 3 个线程并发执行的结果,最后通过 results 可以看到 3 个线程任务的返回结果。

通过上面程序可以看出,使用 map() 方法来启动线程,并收集线程的执行结果,不仅具有代码简单的优点,而且虽然程序会以并发方式来执行 action() 函数,但最后收集的 action() 函数的执行结果,依然与传入参数的结果保持一致。也就是说,上面 results 的第一个元素是 action(50) 的结果,第二个元素是 action(100) 的结果,第三个元素是 action(150) 的结果。

看完了这篇文章,相信你对python中线程池的使用方法有了一定的了解,想了解更多相关知识,欢迎关注亿速云行业资讯频道,感谢各位的阅读!