小编给大家分享一下关于keras训练模型fit和fit_generator的案例,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨方法吧!

第一种,fit

import kerasfrom keras.models import Sequentialfrom keras.layers import Denseimport numpy as npfrom sklearn.preprocessing import LabelEncoderfrom sklearn.preprocessing import OneHotEncoderfrom sklearn.model_selection import train_test_split#读取数据x_train = np.load("D:\\machineTest\\testmulPE_win7\\data_sprase.npy")[()]y_train = np.load("D:\\machineTest\\testmulPE_win7\\lable_sprase.npy")# 获取分类类别总数classes = len(np.unique(y_train))#对label进行one-hot编码,必须的label_encoder = LabelEncoder()integer_encoded = label_encoder.fit_transform(y_train)onehot_encoder = OneHotEncoder(sparse=False)integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)y_train = onehot_encoder.fit_transform(integer_encoded)#shuffleX_train, X_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.3, random_state=0)model = Sequential()model.add(Dense(units=1000, activation='relu', input_dim=784))model.add(Dense(units=classes, activation='softmax'))model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])model.fit(X_train, y_train, epochs=50, batch_size=128)score = model.evaluate(X_test, y_test, batch_size=128)# #fit参数详情# keras.models.fit(# self,# x=None, #训练数据# y=None, #训练数据label标签# batch_size=None, #每经过多少个sample更新一次权重,defult 32# epochs=1, #训练的轮数epochs# verbose=1, #0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录# callbacks=None,#list,list中的元素为keras.callbacks.Callback对象,在训练过程中会调用list中的回调函数# validation_split=0., #浮点数0-1,将训练集中的一部分比例作为验证集,然后下面的验证集validation_data将不会起到作用# validation_data=None, #验证集# shuffle=True, #布尔值和字符串,如果为布尔值,表示是否在每一次epoch训练前随机打乱输入样本的顺序,如果为"batch",为处理HDF5数据# class_weight=None, #dict,分类问题的时候,有的类别可能需要额外关注,分错的时候给的惩罚会比较大,所以权重会调高,体现在损失函数上面# sample_weight=None, #array,和输入样本对等长度,对输入的每个特征+个权值,如果是时序的数据,则采用(samples,sequence_length)的矩阵# initial_epoch=0, #如果之前做了训练,则可以从指定的epoch开始训练# steps_per_epoch=None, #将一个epoch分为多少个steps,也就是划分一个batch_size多大,比如steps_per_epoch=10,则就是将训练集分为10份,不能和batch_size共同使用# validation_steps=None, #当steps_per_epoch被启用的时候才有用,验证集的batch_size# **kwargs #用于和后端交互# )# # 返回的是一个History对象,可以通过History.history来查看训练过程,loss值等等

第二种,fit_generator(节省内存)

# 第二种,可以节省内存'''Created on 2018-4-11fit_generate.txt,后面两列为lable,已经one-hot编码1 2 0 12 3 1 01 3 0 11 4 0 12 4 1 02 5 1 0'''import kerasfrom keras.models import Sequentialfrom keras.layers import Denseimport numpy as npfrom sklearn.model_selection import train_test_splitcount =1 def generate_arrays_from_file(path): global count while 1: datas = np.loadtxt(path,delimiter=' ',dtype="int") x = datas[:,:2] y = datas[:,2:] print("count:"+str(count)) count = count+1 yield (x,y)x_valid = np.array([[1,2],[2,3]])y_valid = np.array([[0,1],[1,0]])model = Sequential()model.add(Dense(units=1000, activation='relu', input_dim=2))model.add(Dense(units=2, activation='softmax'))model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])model.fit_generator(generate_arrays_from_file("D:\\fit_generate.txt"),steps_per_epoch=10, epochs=2,max_queue_size=1,validation_data=(x_valid, y_valid),workers=1)# steps_per_epoch 每执行一次steps,就去执行一次生产函数generate_arrays_from_file# max_queue_size 从生产函数中出来的数据时可以缓存在queue队列中# 输出如下:# Epoch 1/2# count:1# count:2# # 1/10 [==>...........................] - ETA: 2s - loss: 0.7145 - acc: 0.3333count:3# count:4# count:5# count:6# count:7# # 7/10 [====================>.........] - ETA: 0s - loss: 0.7001 - acc: 0.4286count:8# count:9# count:10# count:11# # 10/10 [==============================] - 0s 36ms/step - loss: 0.6960 - acc: 0.4500 - val_loss: 0.6794 - val_acc: 0.5000# Epoch 2/2# # 1/10 [==>...........................] - ETA: 0s - loss: 0.6829 - acc: 0.5000count:12# count:13# count:14# count:15# # 5/10 [==============>...............] - ETA: 0s - loss: 0.6800 - acc: 0.5000count:16# count:17# count:18# count:19# count:20# # 10/10 [==============================] - 0s 11ms/step - loss: 0.6766 - acc: 0.5000 - val_loss: 0.6662 - val_acc: 0.5000

补充知识:

自动生成数据还可以继承keras.utils.Sequence,然后写自己的生成数据类:

keras数据自动生成器,继承keras.utils.Sequence,结合fit_generator实现节约内存训练

#coding=utf-8'''Created on 2018-7-10'''import kerasimport mathimport osimport cv2import numpy as npfrom keras.models import Sequentialfrom keras.layers import Denseclass DataGenerator(keras.utils.Sequence): def __init__(self, datas, batch_size=1, shuffle=True): self.batch_size = batch_size self.datas = datas self.indexes = np.arange(len(self.datas)) self.shuffle = shuffle def __len__(self): #计算每一个epoch的迭代次数 return math.ceil(len(self.datas) / float(self.batch_size)) def __getitem__(self, index): #生成每个batch数据,这里就根据自己对数据的读取方式进行发挥了 # 生成batch_size个索引 batch_indexs = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # 根据索引获取datas集合中的数据 batch_datas = [self.datas[k] for k in batch_indexs] # 生成数据 X, y = self.data_generation(batch_datas) return X, y def on_epoch_end(self): #在每一次epoch结束是否需要进行一次随机,重新随机一下index if self.shuffle == True: np.random.shuffle(self.indexes) def data_generation(self, batch_datas): images = [] labels = [] # 生成数据 for i, data in enumerate(batch_datas): #x_train数据 image = cv2.imread(data) image = list(image) images.append(image) #y_train数据 right = data.rfind("\\",0) left = data.rfind("\\",0,right)+1 class_name = data[left:right] if class_name=="dog": labels.append([0,1]) else: labels.append([1,0]) #如果为多输出模型,Y的格式要变一下,外层list格式包裹numpy格式是list[numpy_out1,numpy_out2,numpy_out3] return np.array(images), np.array(labels) # 读取样本名称,然后根据样本名称去读取数据class_num = 0train_datas = [] for file in os.listdir("D:/xxx"): file_path = os.path.join("D:/xxx", file) if os.path.isdir(file_path): class_num = class_num + 1 for sub_file in os.listdir(file_path): train_datas.append(os.path.join(file_path, sub_file))# 数据生成器training_generator = DataGenerator(train_datas)#构建网络model = Sequential()model.add(Dense(units=64, activation='relu', input_dim=784))model.add(Dense(units=2, activation='softmax'))model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])model.fit_generator(training_generator, epochs=50,max_queue_size=10,workers=1)

看完了这篇文章,相信你对关于keras训练模型fit和fit_generator的案例有了一定的了解,想了解更多相关知识,欢迎关注亿速云行业资讯频道,感谢各位的阅读!