python中numpy和pandas介绍
numpy和pandas是python中用于处理数据的两个库。
numpy介绍:
numpy用于处理array,且array中数据类型必须一致。下面以代码备注的方式介绍。
#STARTimport numpy as npv=np.array([1,2,3,4,5,6,7,8]) //array中以list的方式展现m=np.array([[1,2,3,4,5,6,7,8], [8,7,6,5,4,3,2,1]])h=np.array([[1,2,3,4,5,6,7,8], [8,7,6,5,4,3,2,1], [9,8,7,6,5,4,3,2]],dtype=float) //指定list中数据类型为floatprint(v.type) //查看array类型print(v.shape) //查看array模型#print(np.shape(v))print(v.size)#print(np.size(v))print(v.dtype)#END
#STARTimport numpy as np##如下是一个三行四列的array #[1,2,3,4]#[2,3,4,5]#[3,4,5,6]#shape(3,4)a=np.array([[1,2,3,4],[2,3,4,5],[3,4,5,6]])b=a[0:2,1:3] //array切分操作,对比list中的cut。修改b的话a也会变更。h=np.array([[1,2],[3,4],[5,6]])i=np.array(h[0,1],h[1,1],h[2,0]) //使用index方法脱离关系,即b变化a不变。i[[0,0]]=888print(i)print(h)c=np.zeros((2,20)) //生成2行20列的0print(c)d=np.ones((20,5)) //生成20行5列的1print(d)e=np.full((5,7),888) //生成5行7列的888print(e)f=np.eye(10) //Identify matrix(I)print(f)g=np.random.random((8,19)) //生成随机arrayprint(g)#END
#STARTj=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])k=np.array([0,2,0,1])l=j[np.arange(4),k] //j中前4行按照k中的数值提取列中元素j[np.arange(4),k] += 100 //j中前4行按照k中的数值提取列中元素后再加100,返回jprint(j)#END
#STARTm=np.array([[1,2,3],[4,5,6],[7,8,9]])print(m)boolean_array_indexing =(m>5) //按照判断条件将array转换成布尔值print(boolean_array_indexing)print(m(m>5))#END
#START#array四则运算x=np.array([[1,2],[3,4]],dtype=np.float64)y=np.array([[5,6],[7,8]],dtype=np.float64)print(x+y)print(np.add(x,y))print(x-y)print(np.subtract(x,y))print(x*y)print(np.multiply(x,y))print(x/y)print(np.divide(x,y))print(np.sqrt(x))print(x.dot(y))print(np.dot(x,y))i=np.array([3,0])j=np.array([0,4])print(i.dot(j))print(np.dot(i.j))x=np.array([[1,2],[3,4]])print(x)print(np.sum(x))print(np.sum(x,axis=1))print(x,T) //变形#END
#STARTx=np,array([[1,2],[3,4],[5,6]])y=np.array([0,1])print(x+y) //broadcasting会自动补齐y中缺少元素#END
#STARTx=np,array([[1,2,3],[3,4,6],[5,6,7],[7,8,9]])print(x[1,0:2])y=np.array([1,0,1])z=np.empty_like(x) //生成一个和x格式一致的arrayprint(z)for i in range(4): z[i,:]=x[i,:]+y#END
pandas介绍:
用于处理.csv文件
import pandas as pdpd.set_option('display.max_rows',1000) //用于设置展示的行数和列数pd.set_option('display.max_columns',1000)user_input_cols=['','','','','',''] //用于自定义每一列的名称data_frame=pd.read_csv('diabetes.csv',index_col=0,header=None, name=user_input_cols) //读取文件print(df.head()) //展示文件的前几行**********************#dataframe //数据域#series //列df=pd.read_csv('diabetes.csv',index_col=0,header=None, name=user_input_cols)print(df['series_name']) //展示列名称#series相加print(df.series_name1+df.series_name2)print(df.series_name1+','+df.series_name2)new_series=df.series_name1+','+df.series_name2df['series_name1+series_name2']=new_seriesprint(df.dtypes)**********************#查看数据特征print(df.describe())
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。