这期内容当中小编将会给大家带来有关range在python中的意思是什么,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

python range() 函数可创建一个整数列表,一般用在 for 循环中。

函数语法

range(start, stop[, step])

参数说明:

start: 计数从 start 开始。默认是从 0 开始。例如range(5)等价于range(0, 5);

stop: 计数到 stop 结束,但不包括 stop。例如:range(0, 5) 是[0, 1, 2, 3, 4]没有5

step:步长,默认为1。例如:range(0, 5) 等价于 range(0, 5, 1)

实例

>>>range(10) # 从 0 开始到 10[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]>>> range(1, 11) # 从 1 开始到 11[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> range(0, 30, 5) # 步长为 5[0, 5, 10, 15, 20, 25]>>> range(0, 10, 3) # 步长为 3[0, 3, 6, 9]>>> range(0, -10, -1) # 负数[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]>>> range(0)[]>>> range(1, 0)[]以下是 range 在 for 中的使用,循环出runoob 的每个字母: >>>x = 'runoob'>>> for i in range(len(x)) :... print(x[i])... runoob>>> 在tensorflow python 3.6的环境下,range函数中实参必须为int型,否则报错 def load_dataset(data_dir, img_size):"""img_files = os.listdir(data_dir)test_size = int(len(img_files)*0.2)test_indices = random.sample(range(len(img_files)),test_size)for i in range(len(img_files)):#img = scipy.misc.imread(data_dir+img_files[i])if i in test_indices:test_set.append(data_dir+"/"+img_files[i])else:train_set.append(data_dir+"/"+img_files[i])return"""global train_setglobal test_setimgs = [] img_files = os.listdir(data_dir)for img in img_files:try:tmp= scipy.misc.imread(data_dir+"/"+img)x,y,z = tmp.shapecoords_x = x // img_sizecoords_y = y // img_size #coords_y = y / img_size# coords_x = x / img_size #print (coords_x)coords = [ (q,r) for q in range(coords_x) for r in range(coords_y) ]for coord in coords:imgs.append((data_dir+"/"+img,coord))except:print ("oops")test_size = min(10,int( len(imgs)*0.2))random.shuffle(imgs)test_set = imgs[:test_size]train_set = imgs[test_size:][:200]returndef get_batch(batch_size,original_size,shrunk_size):global batch_index"""img_indices = random.sample(range(len(train_set)),batch_size)for i in range(len(img_indices)):index = img_indices[i]img = scipy.misc.imread(train_set[index])if img.shape:img = crop_center(img,original_size,original_size)x_img = scipy.misc.imresize(img,(shrunk_size,shrunk_size))x.append(x_img)y.append(img)"""max_counter = len(train_set)/batch_size counter = batch_index % max_counter#counter = tf.to_int32(batch_index % max_counter) window = [x for x in range(int(counter*batch_size),int((counter+1)*batch_size))] #window = [x for x in range(tf.to_int32(counter*batch_size),tf.to_int32((counter+1)*batch_size))]#window = [x for x in np.arange((counter*batch_size),((counter+1)*batch_size))]#a1=tf.cast(counter*batch_size,tf.int32)#a2=tf.cast((counter+1)*batch_size,tf.int32)#window = [x for x in range(a1,a2)]#window = [x for x in np.arange(a1,a2)]#win2 = tf.cast(window,tf.int32)#win2 = tf.to_int32(window)#win2 = tf.to_int64(window) imgs = [train_set[q] for q in window]x = [scipy.misc.imresize(get_image(q,original_size),(shrunk_size,shrunk_size)) for q in imgs]#scipy.misc.imread(q[0])[q[1][0]*original_size:(q[1][0]+1)*original_size,q[1][1]*original_size:(q[1][1]+1)*original_size].resize(shrunk_size,shrunk_size) for q in imgs]y = [get_image(q,original_size) for q in imgs]#scipy.misc.imread(q[0])[q[1][0]*original_size:(q[1][0]+1)*original_size,q[1][1]*original_size:(q[1][1]+1)*original_size] for q in imgs]batch_index = (batch_index+1)%max_counter

上述就是小编为大家分享的range在python中的意思是什么了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。