KafkaProducer在调用send方法发送消息至broker的过程中,首先是经过拦截器Inteceptors处理,然后是经过序列化Serializer处理,之后就到了Partitions阶段,即分区分配计算阶段。在某些应用场景下,业务逻辑需要控制每条消息落到合适的分区中,有些情形下则只要根据默认的分配规则即可。在KafkaProducer计算分配时,首先根据的是ProducerRecord中的partition字段指定的序号计算分区。读者有可能刚睡醒,看到这个ProducerRecord似曾相识,没有关系,先看段Kafka生产者的示例片段:

Producer<String,String> producer = new KafkaProducer<String,String>(properties);String message = "kafka producer demo";ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(topic,message);try { producer.send(producerRecord).get();} catch (InterruptedException e) { e.printStackTrace();} catch (ExecutionException e) { e.printStackTrace();}

没错,ProducerRecord只是一个封装了消息的对象而已,ProducerRecord一共有5个成员变量,即:

private final String topic;//所要发送的topicprivate final Integer partition;//指定的partition序号private final Headers headers;//一组键值对,与RabbitMQ中的headers类似,kafka0.11.x版本才引入的一个属性private final K key;//消息的keyprivate final V value;//消息的value,即消息体private final Long timestamp;//消息的时间戳,可以分为Create_Time和LogAppend_Time之分,这个以后的文章中再表。123456

在KafkaProducer的源码(1.0.0)中,计算分区时调用的是下面的partition()方法:

/** * computes partition for given record. * if the record has partition returns the value otherwise * calls configured partitioner class to compute the partition. */private int partition(ProducerRecord<K, V> record, byte[] serializedKey, byte[] serializedValue, Cluster cluster) { Integer partition = record.partition(); return partition != null ? partition : partitioner.partition(record.topic(), record.key(), serializedKey, record.value(), serializedValue, cluster);}

可以看出的确是先判断有无指明ProducerRecord的partition字段,如果没有指明,则再进一步计算分区。上面这段代码中的partitioner在默认情况下是指Kafka默认实现的org.apache.kafka.clients.producer.DefaultPartitioner,其partition()方法实现如下:

/** * Compute the partition for the given record. * * @param topic The topic name * @param key The key to partition on (or null if no key) * @param keyBytes serialized key to partition on (or null if no key) * @param value The value to partition on or null * @param valueBytes serialized value to partition on or null * @param cluster The current cluster metadata */public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = nextValue(topic); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; }}private int nextValue(String topic) { AtomicInteger counter = topicCounterMap.get(topic); if (null == counter) { counter = new AtomicInteger(ThreadLocalRandom.current().nextInt()); AtomicInteger currentCounter = topicCounterMap.putIfAbsent(topic, counter); if (currentCounter != null) { counter = currentCounter; } } return counter.getAndIncrement();}

由上源码可以看出partition的计算方式:

如果key为null,则按照一种轮询的方式来计算分区分配如果key不为null则使用称之为murmur的Hash算法(非加密型Hash函数,具备高运算性能及低碰撞率)来计算分区分配。

KafkaProducer中还支持自定义分区分配方式,与org.apache.kafka.clients.producer.internals.DefaultPartitioner一样首先实现org.apache.kafka.clients.producer.Partitioner接口,然后在KafkaProducer的配置中指定partitioner.class为对应的自定义分区器(Partitioners)即可,即:

properties.put("partitioner.class","com.hidden.partitioner.DemoPartitioner");

自定义DemoPartitioner主要是实现Partitioner接口的public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster)的方法。DemoPartitioner稍微修改了下DefaultPartitioner的计算方式,详细参考如下:

public class DemoPartitioner implements Partitioner { private final AtomicInteger atomicInteger = new AtomicInteger(0); @Override public void configure(Map<String, ?> configs) {} @Override public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (null == keyBytes || keyBytes.length<1) { return atomicInteger.getAndIncrement() % numPartitions; } //借用String的hashCode的计算方式 int hash = 0; for (byte b : keyBytes) { hash = 31 * hash + b; } return hash % numPartitions; } @Override public void close() {}}

这个自定义分区器的实现比较简单,读者可以根据自身业务的需求来灵活实现分配分区的计算方式,比如:一般大型电商都有多个仓库,可以将仓库的名称或者ID作为Key来灵活的记录商品信息。


本文的重点是你有没有收获与成长,其余的都不重要,希望读者们能谨记这一点。同时我经过多年的收藏目前也算收集到了一套完整的学习资料,包括但不限于:分布式架构、高可扩展、高性能、高并发、Jvm性能调优、Spring,MyBatis,Nginx源码分析,Redis,ActiveMQ、、Mycat、Netty、Kafka、Mysql、Zookeeper、Tomcat、Docker、Dubbo、Nginx等多个知识点高级进阶干货,希望对想成为架构师的朋友有一定的参考和帮助

需要更详细思维导图和以下资料的可以加一下技术交流分享群:“708 701 457”免费获取