keras如何获取某层输出和复用层的多次输出
这篇文章主要讲解了keras如何获取某层输出和复用层的多次输出,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
两个tensor经过一个layer实例会产生两个输出。
a = Input(shape=(280, 256))b = Input(shape=(280, 256)) lstm = LSTM(32)encoded_a = lstm(a)encoded_b = lstm(b) lstm.output
这个代码有错误,因为最后一行没有指定lstm这个layer实例的那个输出。
>> AttributeError: Layer lstm_1 has multiple inbound nodes,hence the notion of "layer output" is ill-defined.Use `get_output_at(node_index)` instead.
所以如果想要得到多个输出中的一个:
assert lstm.get_output_at(0) == encoded_a
assert lstm.get_output_at(1) == encoded_b
补充知识:kears训练中如何实时输出卷积层的结果?
在训练unet模型时,发现预测结果和真实结果几乎完全差距太大,想着打印每层输出的结果查看问题在哪?
但是发现kears只是提供了训练完成后在模型测试时输出每层的函数。并没有提供训练时的函数,同时本着不对原有代码进行太大改动。最后实现了这个方法。
即新建一个输出节点添加到现有的网络结构里面。
#新建一个打印层。class PrintLayer(Layer):#初始化方法,不须改变 def __init__(self, **kwargs): super(PrintLayer, self).__init__(**kwargs)#调用该层时执行的方法 def call(self, x): x = tf.Print(x,[x],message="x is: ",summarize=65536) #调用tf的Print方法打印tensor方法,第一个参数为输入的x,第二个参数为要输出的参数,summarize参数为输出的元素个数。 return x; #一定要返回tf.Print()函数返回的变量,不要直接使用传入的变量。 #接着在网络中引入conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)print11 = PrintLayer()(conv9)conv10 = Conv2D(1, 1, activation = 'sigmoid')(print11)#PrintLayer层处理的结果一定要在下一层用到,不然不会打印tensor。该结点可以加在任何结点之间。
看完上述内容,是不是对keras如何获取某层输出和复用层的多次输出有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。