译者按: AI时代,不会机器学习的JavaScript开发者不是好的前端工程师。

原文: Machine Learning with JavaScript : Part 1译者: Fundebug

为了保证可读性,本文采用意译而非直译。另外,本文版权归原作者所有,翻译仅用于学习。

使用JavaScript做机器学习?不是应该用Python吗?是不是我疯了才用JavaScript做如此繁重的计算?难道我不用Python和R是为了装逼?scikit-learn(Python机器学习库)不能使用Python吧?

嗯,我并没有开玩笑...

其实呢,类似于Python的scikit-learn,JavaScript开发者也开发了一些机器学习库,我打算用一下它们。

JavaScript不能用于机器学习?太慢(幻觉?)矩阵操作太难(有函数库啊,比如math.js)JavaScript只能用于前端开发(Node.js开发者笑了)机器学习库都是Python(JS开发者)JavaScript机器学习库brain.js (神经网络)Synaptic (神经网络)Natural (自然语言处理)ConvNetJS (卷积神经网络)mljs (一系列AI库)Neataptic (神经网络)Webdnn (深度学习)

我们将使用mljs来实现线性回归,源代码在GitHub仓库: machine-learning-with-js。下面是详细步骤:

1. 安装模块

$ yarn add ml-regression csvtojson

或者使用 npm

$ npm install ml-regression csvtojsonml-regression模块提供了一些回归算法csvtojson模块用于将CSV数据转换为JSON。2. 初始化并导入数据

下载.csv数据。

假设你已经初始化了一个NPM项目,请在index.js中输入以下内容:

const ml = require("ml-regression");const csv = require("csvtojson");const SLR = ml.SLR; // 线性回归const csvFilePath = "advertising.csv"; // 训练数据let csvData = [], X = [], y = []; let regressionModel;

使用csvtojson模块的fromFile方法加载数据:

csv() .fromFile(csvFilePath) .on("json", (jsonObj) => { csvData.push(jsonObj); }) .on("done", () => { dressData(); performRegression(); });3. 转换数据

导入的数据为json对象数组,我们需要使用dressData函数将其转化为两个数据向量x和y:

// 将JSON数据转换为向量数据function dressData() { /** * 原始数据中每一行为JSON对象 * 因此需要将数据转换为向量数据,并将字符串解析为浮点数 * { * TV: "10", * Radio: "100", * Newspaper: "20", * "Sales": "1000" * } */ csvData.forEach((row) => { X.push(f(row.Radio)); y.push(f(row.Sales)); });}// 将字符串解析为浮点数function f(s) { return parseFloat(s);}4. 训练数据并预测

编写performRegression函数:

// 使用线性回归算法训练数据function performRegression() { regressionModel = new SLR(X, y); console.log(regressionModel.toString(3)); predictOutput();}

regressionModel的toString方法可以指定参数的精确度。

predictOutput函数可以根据输入值输出预测值。

// 接收输入数据,然后输出预测值function predictOutput() { rl.question("请输入X用于预测(输入CTRL+C退出) : ", (answer) => { console.log(`当X = ${answer}时, 预测值y = ${regressionModel.predict(parseFloat(answer))}`); predictOutput(); });}

predictOutput函数使用了Node.js的Readline模块:

const readline = require("readline");const rl = readline.createInterface({ input: process.stdin, output: process.stdout});5. 完整程序

完整的程序index.js是这样的:

const ml = require("ml-regression");const csv = require("csvtojson");const SLR = ml.SLR; // 线性回归const csvFilePath = "advertising.csv"; // 训练数据let csvData = [], X = [], y = []; let regressionModel;const readline = require("readline");const rl = readline.createInterface({ input: process.stdin, output: process.stdout});csv() .fromFile(csvFilePath) .on("json", (jsonObj) => { csvData.push(jsonObj); }) .on("done", () => { dressData(); performRegression(); });// 使用线性回归算法训练数据function performRegression() { regressionModel = new SLR(X, y); console.log(regressionModel.toString(3)); predictOutput();}// 将JSON数据转换为向量数据function dressData() { /** * 原始数据中每一行为JSON对象 * 因此需要将数据转换为向量数据,并将字符串解析为浮点数 * { * TV: "10", * Radio: "100", * Newspaper: "20", * "Sales": "1000" * } */ csvData.forEach((row) => { X.push(f(row.Radio)); y.push(f(row.Sales)); });}// 将字符串解析为浮点数function f(s) { return parseFloat(s);}// 接收输入数据,然后输出预测值function predictOutput() { rl.question("请输入X用于预测(输入CTRL+C退出) : ", (answer) => { console.log(`当X = ${answer}时, 预测值y = ${regressionModel.predict(parseFloat(answer))}`); predictOutput(); });}

执行 node index.js ,则输出如下:

$ node index.js

f(x) = 0.202 * x + 9.31请输入X用于预测(输入CTRL+C退出) : 151.5当X = 151.5时, 预测值y = 39.98974927911285请输入X用于预测(输入CTRL+C退出) :

恭喜!你已经使用JavaScript训练了一个线性回归模型,如下:

f(x) = 0.202 * x + 9.31

感兴趣的话,请持续关注 machine-learning-with-js,我将使用JavaScript实现各种机器学习算法。

关于Fundebug

Fundebug专注于JavaScript、微信小程序、微信小游戏、支付宝小程序、React Native、Node.js和Java实时BUG监控。 自从2016年双十一正式上线,Fundebug累计处理了7亿+错误事件,得到了Google、360、金山软件、百姓网等众多知名用户的认可。欢迎免费试用!

版权声明

转载时请注明作者Fundebug以及本文地址:
https://blog.fundebug.com/2017/07/03/javascript-machine-learning-regression/