LeetCode 338. Counting Bits

Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.

Example:

Fornum = 5you should return[0,1,1,2,1,2].

Follow up:

It is very easy to come up with a solution with run timeO(n*sizeof(integer)). But can you do it in linear timeO(n)/possibly in a single pass?

Space complexity should beO(n).

Can you do it like a boss? Do it without using any builtin function like__builtin_popcountin c++ or in any other language.

Hint:

You should make use of what you have produced already.

Divide the numbers in ranges like [2-3], [4-7], [8-15] and so on. And try to generate new range from previous.

Or does the odd/even status of the number help you in calculating the number of 1s?

题目大意:

给定一个非负整数num。对于每一个满足0 ≤ i ≤ num的数字i,计算其数字的二进制表示中1的个数,并以数组形式返回。

测试用例如题目描述。

进一步思考:

很容易想到运行时间 O(n*sizeof(integer)) 的解法。但你可以用线性时间O(n)的一趟算法完成吗?

空间复杂度应当为O(n)。

你可以像老板那样吗?不要使用任何内建函数(比如C++的__builtin_popcount)。

提示:

你应当利用已经生成的结果。

将数字拆分为诸如 [2-3], [4-7], [8-15] 之类的范围。并且尝试根据已经生成的范围产生新的范围。

3. 数字的奇偶性可以帮助你计算1的个数吗?

解题思路:

解法I 利用移位运算:

递推式:ans[n]=ans[n>>1]+(n&1)

//c++版本classSolution{public:vector<int>countBits(intnum){//一个数组有(0~num)即num+1个元素,初始化为0vector<int>v1(num+1,0);for(inti=1;i<=num;i++){v1[i]=v1[i>>1]+(i&1);}}}

15 / 15test cases passed.

Status:Accepted

Runtime:124 ms

Submitted:0minutes ago

解法II 利用highbits运算:

递推式:ans[n]=ans[n-highbits(n)]+1

其中highbits(n)表示只保留n的最高位得到的数字。

highbits(n)=1<<int(math.log(x,2))math.log()不是c++/c的函数,java中有

例如:

highbits(7)=4(7的二进制形式为111)highbits(10)=8(10的二进制形式为1010)


解法III 利用按位与运算:

递推式:ans[n]=ans[n&(n-1)]+1

//c++版本classSolution{public:vector<int>countBits(intnum){//一个数组有(0~num)即num+1个元素,初始化为0vector<int>v1(num+1,0);for(inti=1;i<=num;i++){v1[i]=v1[n&(n-1)]+1;}}}