Python中序列化是什么
这篇文章将为大家详细讲解有关Python中序列化是什么,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
程序运行时,所有的变量都储存在内存中,程序结束运行时,这些占用的内存将被系统回收,无法长期储存,将这些变量转换为可储存或可通过网络传输的过程称之为序列化(pickling),序列化后就可以将它们储存在磁盘或通过网络进行传输。
1.pickle序列化
Python提供了pickle模块来实现变量的序列化,这个模块可以将变量转换成字节码(bytes)形式储存,还能将储存的序列化字节码重新还原成数据对象;
注意:pickle仅能用于python程序之间交换数据,且不同的版本之间并不兼容,需要和其他程序进行通信时,请使用json序列化,它可以在不同编程语言间共享数据。
a.pickle普通对象序列化
先来看一个小实例,使用pickle模块,将几个不同的对象序列化,这些序列化后的对象可用于网络传输或储存到磁盘文件中:
#!/usr/bin/envpython3#coding=utf-8importosimportpickle#创建一个字典对象和一个字符串对象d=dict(one=1,two=2,three=3)s="python"print(d)#输出{'three':3,'two':2,'one':1}print(s)#输出#将这两个对象序列化,nd和ns仅保存在内存中,可用于网络传输nd=pickle.dumps(d)ns=pickle.dumps(s)print(nd)#输出字节码"b'\x80\x03}q\x00...."print(ns)#输出字节码"b'\x80\x03X\x11...."#将序列化后的对象重新还原成数据(假设接收端接收到这些数据后,就能够这样还原)nd=pickle.loads(nd)ns=pickle.loads(ns)print(nd)#输出{'three':3,'two':2,'one':1}print(ns)#输出#创建一个文件testfile,接收字节码(wb),将d对象中的数据写入其中,#用于本地不同应用程序之间数据交换(此时如果我们打开testfile文件,#就会看到一些类似乱码一样的字符,实际上是d对象序列化后的数据)withopen("testfile","wb")asf1:pickle.dump(d,f1)#从testfile文件中读取字节码,还原成数据ifos.path.isfile("testfile"):withopen("testfile","rb")asf2:print(f2.read())#输出"b'\x80\x03}q\x0...."#因为上一步读取了数据,指针位置要重新设置成起始位置,#这仅仅是为了演示给大家看,上面print和seek这两句可以不写f2.seek(0)d=pickle.load(f2)#读取f2中的数据还原print(d)#输出{'three':3,'two':2,'one':1}
总结:仅在内存中序列化和还原,使用dumps()和loads(),要将数据序列化后保存到文件中使用dump(),从文件中还原数据使用load(),两者只有一个s的区别,注意不要混淆。
b.pickle类序列化
有时候我们可能要传输或保存一个类对象与其中所有的数据,python中实现类的序列化十分简单,与对象序列化没有什么区别,请看下面的实例:
#!/usr/bin/envpython3#coding=utf-8importpickle########classA:#--------def__init__(self,name="py",website="python"):self.name=nameself.website=websitex=A()x.name="晴刃"#序列化类实例x,可用于网络传输nx=pickle.dumps(x)print(nx)#输出"b'\x80\x03c__main__...."#还原数据nx=pickle.loads(nx)print(nx)#输出"<__main__.Aobjectat0x7f43c995c080>"#将类对象序列化后保存到磁盘文件中,可用于程序间数据交换withopen("testfile","wb")asf1:pickle.dump(x,f1)#读取文件中的数据还原withopen("testfile","rb")asf1:y=pickle.load(f1)print(y.name)#输出"晴刃"print(y.website)#输出
2.json序列化
如果要在不同的编程语言之间传递对象,可以使用python的json模块对数据进行序列化,json序列化后所有数据都被表示成字符串形式,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输,但在类数据转换时会稍微有点麻烦,没有pickle那么方便。
a.json普通对象序列化
#!/usr/bin/envpython3#coding=utf-8importjson#创建一个字典对象和一个浮点数对象d=dict(one=1,two=2,three=3)f=3.14print(type(d))#<class'dict'>print(type(f))#<class'float'>#普通对象的序列化与pickle相同nd=json.dumps(d)nf=json.dumps(f)#转换后所有对象都变成了字符串类型<class'str'>print(type(nd))print(type(nf))print(nd)#"{"three":3,"two":2,"one":1}"print(nf)#"3.14"#还原数据nd=json.loads(nd)nf=json.loads(nf)print(type(nd))#<class'dict'>print(type(nf))#<class'float'>#将d对象序列化后储存到testfile文件中withopen("testfile","w")asf1:json.dump(d,f1)#从testfile文件中读取数据并还原withopen("testfile","r")asf1:y=json.load(f1)print(type(y))#<class'dict'>
b.json类序列化
使用json序列化类会稍显复杂,因为json的dump方法不知道如何将一个类转换成字符串,需要我们自己指定一个转换函数,请看下面的实例:
#!/usr/bin/envpython3#coding=utf-8importjsonclassA(object):def__init__(self,name="py",website="python"):self.name=nameself.website=website#初始化一个类实例a=A()#创建一个函数,将类A中的对象和数据转换成字典的形式返回defclassA2dict(c):return{"name":c.name,"website":c.website}#将a使用json序列化,参数default告诉python解释器,将前面的对象a传递给后面的classA2dict函数处理,#classA2dict函数会返回一个字典类型,这个类型中包含了实例a中所有对象和数据的"键值对",#然后dumps函数将这个返回的字典类型序列化成字符串类型x=json.dumps(a,default=classA2dict)#如果想偷懒不写classA2dict函数,有一种简便方法,使用匿名函数,并且调用基类的__dict__函数,#这个函数会完成和classA2dict函数相同的功能,即将一个类的所有属性转换成字典"键值对"的形式#x=json.dumps(a,default=lambdaobj:obj.__dict__)print(type(x))#<class'str'>print(x)#"{"website":"python","name":"py"}"#字典类型转换成类返回defdict2classA(d):returnA(d["name"],d["website"])#将json序列后的数据还原成类,object_hook参数将x转换成字典类型,并传递给dict2classA函数处理,#dict2classA函数会读取这个字典中的每个键,将值传入A类进行初始化,返回一个类对象x=json.loads(x,object_hook=dict2classA)print(type(x))#<class'__main__.A'>print(x.website)#将序列化的类写入文件testfile中withopen("testfile","w")asf1:json.dump(a,f1,default=classA2dict)#读取testfile中的数据还原withopen("testfile","r")asf2:y=json.load(f2,object_hook=dict2classA)print(y.name)
关于Python中序列化是什么就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。