这篇文章主要介绍“Golang处理浮点数遇到的精度问题怎么解决”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Golang处理浮点数遇到的精度问题怎么解决”文章能帮助大家解决问题。

一、浮点数是什么?

浮点数,是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。浮点数在计算机中主要用来表示小数,浮点数就是小数点可以出现改变的数字。

因为在计算机的机器语言中,只有二进制,机器语言只能识别0和1。所以,计算机也是不可能存储小数的,所以需要有另一种变通的存储方案。
这种方案就是:

1.指数方案

指数形式:其数值部分是一个小数,小数点前的数字是零,小数点后的第一位数字不是零。一个实数可以有多种指数表示形式,但只有一种属于标准化指数形式。

12.31.23*10^-11.231.23*10^01.230.123*10^1

上面的表格,我们可以很清晰的了解指数方案。同样的我们也就能发现这样表达小数会有一个严重的问题,那就是指数表示形式太多了,如果不能约定好唯一形式,不同代码之间沟通将会出现问题。

2.规范化指数形式

在指数形式的多种表示方式中把小数部分中小数点前的数字为0、小数点后第1位数字不为0的表示形式称为规范化的指数形式。

1.23 的规范化的指数形式 0.123*10^1

一个实数只有一个规范化的指数形式,在程序以指数形式输出一个实数时,必然以规范化的指数形式输出。

0.123e001

1.为什么要以 0 开头

1.23456要二进制存放需分别存整数部和小数部,而0.123456则只需存小数部,这样在占用相同字节的情况下,后一种方法可容纳更大精度的浮点数。

2.为什么 e 后面要加 0 ,e001 和 e1 一样吗

后面加 0 是 %e 的输出格式,并不是规范化的指数形式所必需的,
e001 和 e1 是一样的

3.IEEE 754标准

由于不同机器对浮点数的表示有较大差别,这不利于软件在不同计算机之间的移植。为此,美国IEEE提出了一个从系统角度支持浮点数的表示方法,称为IEEE754标准(IEEE,1985),当今流行的计算机几乎都采用了这一标准。

IEEE 754规定了四种表示浮点数值的方式:单精确度(32位)、双精确度(64位)、延伸单精确度(43比特以上,很少使用)与延伸双精确度(79比特以上,通常以80位实现)。只有32位模式有强制要求,其他都是选择性的。

二、出现精度问题的情况1.浮点数加减运算

输入数据:

a = 2.3329 b = 3.1234

代码如下(示例):

packagemainimport"fmt"funcmain(){//a=2.3329b=3.1234a,b:=2.3329,3.1234c:=a+bfmt.Println(c)//5.456300000000001}}

结果精度出现问题
2.3329 + 3.1234 = 5.456300000000001
已经出错

2.float64与float32之间转换

输入数据:

a = 9.99999

代码如下(示例):

packagemainimport"fmt"funcmain(){varafloat32a=9.99999b:=float64(a)fmt.Println(b)//9.999990463256836}}

结果精度出现问题
9.99999 = 9.999990463256836
已经出错

3.int64和float64,int32和float32转换

1.int32和float32转换

输入数据:

a = 9.99999

代码如下(示例):

packagemainimport"fmt"funcmain(){varaint32a=999990455b:=float32(a)fmt.Printf("%f\n",b)//999990464.000000}}

结果精度出现问题
999990455= 999990464.000000
已经出错

2.int64和float64转换

输入数据:

a = 999999942424527242

代码如下(示例):

packagemainimport"fmt"funcmain(){varaint64a=999999942424527242b:=float64(a)fmt.Printf("%f\n",b)//999999942424527232.000000}}

结果精度出现问题
999999942424527242 = 999999942424527232.000000
已经出错

4.float64位直接乘100

输入数据:

a = 999999942424527242

代码如下(示例):

packagemainimport"fmt"funcmain(){varafloat64a=1128.61b:=a*100fmt.Println(b)//112860.99999999999}}

结果精度出现问题
1128.61 * 100= 112860.99999999999
已经出错

三、decimal 解决精度问题

利用 Decimal 包解决精度问题

gogetgithub.com/shopspring/decimal1.浮点数加减运算

输入数据:

a = 2.3329 b = 3.1234

代码如下(示例):

packagemainimport("fmt""github.com/shopspring/decimal")funcmain(){//a=2.3329b=3.1234a,b:=2.3329,3.1234c:=decimal.NewFromFloat(a)d:=decimal.NewFromFloat(b)fmt.Println(a,b)fmt.Println(c,d)fmt.Println("此时ab与cd相同")fmt.Println(a+b)//5.456300000000001}fmt.Println(c.Add(d))//5.4563}}

结果精度不再出现问题

2.float64与float32之间转换

输入数据:

a = 9.99999

代码如下(示例):

packagemainimport("fmt""github.com/shopspring/decimal")funcmain(){varafloat32a=9.99999c:=decimal.NewFromFloat32(a)b:=float64(a)c.Float64()fmt.Println(b)//9.999990463256836}fmt.Println(c.Float64())//9.99999}}

结果精度不再出现问题

3.float64位直接乘100

输入数据:

a = 999999942424527242

代码如下(示例):

packagemainimport("fmt""github.com/shopspring/decimal")funcmain(){varafloat64a=1128.61c:=decimal.NewFromFloat(a)b:=a*100fmt.Println(b)//112860.99999999999}fmt.Println(c.Mul(decimal.NewFromInt(100)))//112861}}

结果精度不再出现问题

关于“Golang处理浮点数遇到的精度问题怎么解决”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。